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Abstract 

Mobile devices and wireless networks are becoming more powerful and affordable, leading 
to the growing importance of mobile data access. Unfortunately, mobile environments 
are inherently turbulent; the resources available to mobile clients change dramatically and 
unpredictably over time. 

This dissertation puts forth the claim that clients must adapt their behavior to such 
turbulence by trading quality of fetched data for performance in fetching it. Such adaptation 
is best provided by application-aware adaptation — a collaboration between the operating 
system and its applications. In this collaboration, the system is responsible for providing 
the mechanisms for adaptation, while applications are free to set adaptive policies. 

The dissertation next describes the design and implementation of Odyssey, a platform 
for mobile data access. This discussion focuses on the mechanisms provided by the system, 
the architecture comprising those mechanisms, and the application programming interface 
from which applications construct adaptive policies. The dissertation then presents three 
applications that make use of these mechanisms: a video player, a web browser, and a 
speech recognition system. These applications adapt their behavior to changes in available 
network bandwidth. 

There are three questions to ask of this prototype and its applications. First, how agile 
can the prototype be in the face of changing network bandwidth? Second, does adaptation 
to substantial changes in bandwidth provide benefit to individual applications? Third, is 
the collaboration between the system and applications necessary when several applications 
are run concurrently? 

These questions cannot be answered simply by subjecting the prototype to a real wire- 
less network. Such networks provide neither stable nor repeatable performance, and hence 
are not suitable for comparative evaluations. Instead, the prototype is evaluated using trace 
modulation. This technique allows one to capture the performance characteristics of a 
wireless network over a short period of time, and reliably recreate that performance in an 
otherwise live system. Evaluating the system under modulation shows that Odyssey has 
good agility with respect to changes in network bandwidth, that individual applications can 
benefit from adaptive strategies, and that the system's involvement in adaptation is crucial 
for concurrent applications. 
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Chapter 1 

Introduction 

Mobile devices are becoming increasingly prevalent, as are the wireless networks that con- 
nect them to the outside world. Together, these trends are driving the increasing importance 
of mobile data access, the ability to access data from anywhere at any time. Unfortunately, 
the environments in which mobile devices operate are very turbulent; the resources avail- 
able to a mobile host change dramatically and unpredictably. In response to these changes, 
mobile devices are forced to adapt their behavior. 

This dissertation puts forth the thesis that such adaptation — the trading of data quality 
for resource consumption — is best provided through a collaboration between the system 
and its applications. In this collaboration, called application-aware adaptation, the system 
provides the mechanisms of adaptation, while the applications are free to specify policy. 

The dissertation establishes this claim through the design and implementation of Od- 
yssey, a system that supports application-aware adaptation. Three applications, a video 
player, a Web browser, and a speech recognition system, have been modified to make use 
of these adaptive services. An evaluation of Odyssey and its applications demonstrates both 
the feasibility and utility of application-aware adaptation. 

This chapter begins with a brief scenario introducing the challenges presented to mobile 
clients. It then gives a statement of the thesis, and presents the steps required to substantiate 
the thesis. Finally, it concludes with a road map to the remainder of the dissertation with 
an eye toward how it supports the individual claims. 

1.1    A Mobile Scenario 

A tourist visiting a city carries with him a wearable computer. This computer 
has access to a variety of networks that differ in bandwidth, coverage, cost, 
and reliability. The higher-bandwidth alternatives are more sensitive to fading 
and signal loss as the user moves in and out of the radio shadows of buildings. 

As he walks, the user interacts with his computer through spoken commands; 
he receives output through a head-mounted display or synthesized speech. The 
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speech software exploits remote compute servers when connected, but is capa- 
ble of degraded interactions using a tiny vocabulary when disconnected. One 
application provides a video narration of local history, that is delivered from 
a remote server. Another application is a Web browser that can respond to 
queries about the local environment. 

The client monitors resources such as bandwidth, CPU cycles, and battery 
power, and decides how to best exploit them. For example, when high-band- 
width connectivity is lost due to a radio shadow, the client detects the change 
and reacts to it. The video application begins to conserve bandwidth by low- 
ering the frame rate, while the Web application displays degraded versions of 
large images. When the user emerges from the radio shadow, the client detects 
the improvement in bandwidth, and the applications revert to their original 
behaviors. 

Although the user is aware of changing application behavior during his walk, 
he does not have to initiate adaptation or be involved in its details. Rather, he 
can delegate these decisions to the client, confident that reasonable tradeoffs 
will be made. 

While illustrative, this scenario is only one of many presenting similar problems. For 
example, an emergency response team entering a disaster site would encounter areas where 
the in-place mobile infrastructure is no longer available. Even in mundane situations, vari- 
ations in service are unavoidable. At Carnegie Mellon some campus buildings are covered 
by a 2 Mb/s wireless network, while users in other locations must resort to some alternative 
wireless technology; moving between these technologies yields significant variation. 

There is one thread common to all of these scenarios: in each, the environment in 
which a mobile must operate is turbulent. This recognition brings to light several important 
questions. Are mobile environments significantly more volatile than static environments? 
Does this volatility justify adaptation on the part of mobile clients? How best can one 
provide such adaptation? What properties should such an adaptive system have? 

1.2   The Thesis 

The thesis directly answers the questions raised above: 

Mobile environments are inherently turbulent, requiring clients to a- 
dapt. This adaptation is best provided for diverse, concurrent applications 
through a simple, efficient, and agile collaboration between the system and 
its applications. 
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1.3   Road Map for the Dissertation 

This dissertation establishes the thesis in the following steps: 

• It argues that mobile systems are more volatile than their static counterparts, and 
that this will not change despite the exponential rate of improvement in hardware 
capability. This argument is based on first principles and economic necessities. 

• It argues that this volatility requires some form of adaptation on the part of mobile 
clients. It defines that adaptation as the trading of quality of data for performance 
and resource consumption that occurs as a reaction to changes in the environment of 
the client. 

• It introduces a taxonomy of adaptive systems based on the degree to which the ap- 
plications and the operating system of a mobile client are responsible for making 
adaptation decisions. It argues that, in the presence of diverse and concurrent ap- 
plications, such decisions must be a collaboration between the system, which is best 
positioned to monitor the environment, and applications, which are best positioned to 
specify adaptation policy. This collaboration is called application-aware adaptation. 

• It presents the design and implementation of Odyssey, a small set of extensions to a 
standard operating system that provide a simple, efficient API supporting application- 
aware adaptation. It also presents the design and implementation of three applications 
that have been modified to adapt to changes in available network bandwidth. 

• It introduces a novel experimental method used to quantify agility, and adaptive sys- 
tems generally. Borrowing the technique of transient response analysis from control 
systems, an adaptive system is subject to simple, idealized changes in available re- 
sources, called reference waveforms. In order to carry out such experiments, a test 
system is augmented with trace modulation, a system capable of delaying or drop- 
ping all packets to or from a host based on a simple network model. Parameters to 
this model can be generated synthetically, producing reference traces, or empirically, 
allowing the faithful reproduction of the performance of a real wireless network. 

• It presents the result of experiments that demonstrate three things. First, the Odys- 
sey prototype is sufficiently agile to track changes in bandwidth within a few sec- 
onds. Second, adaptive application strategies are superior to static ones in the face of 
changing network bandwidth. Third, system involvement in adaptation is critical in 
helping applications meet their adaptation needs. 

The rest of this dissertation comprises seven chapters. Chapter 2 examines the con- 
straints on mobile systems and the infrastructure that supports them. These constraints 
render mobile environments more volatile than their static counterparts. It then presents 
the need for diverse, concurrent applications on mobile hosts and argues that, in the context 
of mobility, such applications must adapt their behavior to changes in their environments by 
trading data quality for resource consumption. The chapter then presents the taxonomy of 
adaptation and the case for application-aware adaptation. It concludes with an introduction 
to the concept of agility — the speed with which an adaptive client reacts to some change 
in its environment. 
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Chapter 3 presents the detailed design of the Odyssey prototype. It begins with a set 
of guiding principles, and identifies the historical context from which the design borrows 
many facets. It then provides an overview of the major components of the design and 
presents each of them in turn. 

The implementation of Odyssey is detailed in Chapter 4. The implementation effort 
was driven by a specific set of goals. The chapter begins with these goals, and then presents 
some background details of the host operating system, and proceeds to describe the imple- 
mentation of each of the basic components. It concludes with a description of three adaptive 
applications: a video player, a web browser, and a speech recognition system. 

Wireless networks, by their very nature, present performance that is both complex and 
irreproducible. This lack of experimental control requires some environment in which to 
conduct experiments other than a live, wireless network. To address this problem, Chapter 6 
presents the design, implementation, and evaluation of trace modulation. Trace modulation 
allows network traffic to be delayed or dropped in accordance with a simple, time-varying 
network model yielding reproducible performance. 

Chapter 7 presents three experiments that evaluate the prototype and its applications. 
The first experiment measures the limits to agility imposed by the system itself. The second 
demonstrates the benefit that applications obtain from adaptive strategies over similar, static 
ones. Finally, the third experiment confirms that system involvement in application-aware 
adaptation is critical in supporting concurrent, competing applications. 

Related work is presented in Chapter 8. Chapter 9 concludes the dissertation with a 
summary and the identification of key contributions. Finally, the chapter addresses the 
possible avenues of further research stemming from this work. 



Chapter 2 

Characteristics of Mobile Systems 

To motivate the design of Odyssey this chapter introduces a set of characteristics that are 
intrinsic to mobile systems. These characteristics demand that mobile systems provide 
some form of adaptation to changes, both to the environment in which they operate as well 
as in their demands ofthat environment. 

The chapter begins by presenting a set of constraints placed on mobile systems, but 
not their fixed counterparts. It argues that these constraints, scarcity of local resources, 
variability of the supporting infrastructure, and poor security and robustness, are inherent 
to mobile systems and will not be ehminated by technological progress. 

The chapter then argues that mobile hosts must support concurrent operation of ap- 
plications with diverse data and resource needs. The resulting variations in demand for 
resources, together with the variation in the already scarce supply with those resources, 
lead to the requirement that mobile hosts adapt to these changes. 

The chapter concludes with a discussion of adaptation in mobile systems. It first de- 
fines the sense in which these systems adapt to change: by trading resource usage for data 
quality. It then examines how adaptation decisions might be partitioned between system 
and applications, and argues that only a collaborative partnership can meet the needs of 
mobile computation. Finally, it addresses the issues in comparing adaptive systems. 

2.1    Constraints on Mobile Systems 

The design of mobile systems is driven by two sets of constraints. First, a mobile host's 
local resources and security are limited in comparison to fixed systems of similar costs. 
Second, the infrastructure supporting mobile systems is highly variable, especially in com- 
parison to that supporting more static deployments. These constraints are inherent to mo- 
bile systems; they will not be ehminated by technological advances. 
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2.1.1 Constraints on Mobile Devices 

There are two key constraints on mobile devices in comparison to their fixed counterparts; 
they are resource-poor, and they are less secure. Resource paucity is due to the additional 
design goals for mobile hardware that do not apply to immobile machines. Lowered secu- 
rity arises from the very nature of mobility. 

Resource limitations spring from three requirements placed on the design of mobile 
hardware: low power consumption, light weight, and small physical size. These three re- 
quirements are in addition to the usual constraints on hardware design. Thus, in comparison 
to a similarly-priced machine without these design considerations, a mobile machine will 
always suffer from scarce local resources. Such poverty applies universally: to disk size, 
physical memory, processing power, memory cache size, and screen size. 

Resource constraints are inherent to mobile hardware; technological progress will not 
erase the gap between mobile and immobile machines. While such progress will increase 
the resources available to a typical mobile host, those same advances will be brought to 
bear on desktop systems. Since the latter need pay little or no concern to size, power, and 
weight, they will continue to enjoy an advantage in resources provided at fixed cost. 

Limits in security and robustness are inherent to the very nature of mobile devices. 
Because they are designed to be easily transported, they are more prone to loss or theft. 
They are more likely to be dropped and damaged than desktop systems, and often are 
operated in an environment less accommodating than the typical office building. 

Resource and security constraints imply that mobile devices should not be the true 
home of data. Resource limitations make it difficult to keep all data of interest on a mobile 
device, and the risk of loss is substantial. Rather, data should be kept primarily on servers 
with plentiful resources and stronger security. Mobile devices then act as clients of these 
servers, accessing and manipulating data from them. 

2.1.2 Constraints on Mobile Infrastructure 

The infrastructure supporting mobile clients — network connectivity and remote resources 
— will be diverse, with areas of high and low concentration. This is due to the overlay 
argument, which was first applied by Katz and Brewer [37] to wireless networks. This 
section recounts their basic argument, and then broadens it to apply to elements of a mobile 
infrastructure generally. 

Mobile devices must rely on wireless networks for connectivity while in transit or out- 
doors, and often will take advantage of them while in-building. Such networks tend to have 
lower bandwidth and longer latencies than their wired counterparts. Their lower perfor- 
mance is also highly variable, due to physical effects such as multi-path interference. Due 
to the scale of multi-path effects, seemingly insignificant changes to position may have 
large effects on performance. Environmental interference, which also effects wireless per- 
formance, changes both over time and through space; such changes are unpredictable, and 
can be large. This variance may render connectivity, at any speed, sporadic at best. 
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The variance of a single wireless network is likely to be only a small part of the variance 
in connectivity seen by a mobile client. The use of overlay networks, where different areas 
are served by wireless devices of very different quality, dramatically increases such vari- 
ance. Physical and economic considerations render the use of these networks unavoidable 
in support of mobility. 

Mobile clients operate in a much wider set of places than their immobile counterparts. 
This requires a much broader wireless infrastructure than that necessary for wired networks. 
Further, the presence of a particular mobile client in any one place is typically fleeting, 
complicating the capacity planning of a wireless infrastructure based on a priori knowledge 
of demand. 

It is unrealistic to expect to provide all locales with a universal, high-quality, wireless 
network. Given the scope of such a network, and the unpredictability of the demands placed 
upon it, even providing modest support in all places would be prohibitively expensive. Any 
low-cost, global solution will necessarily be low-bandwidth, high-latency, or both. A given 
base station has a limited spectrum available to it, and would require some number of 
expected users in its service area to justify its deployment. Areas likely to be sparsely 
if at all populated by mobile nodes will have few base stations, and therefore little or no 
connectivity to support them; there will always be such areas of poor connectivity. 

Such coverage would be inadequate in an urban environment, where the concentration 
of mobile users justifies a larger wireless investment. For example, the downtown area of 
a city might be served by a cellular network with re-use of available bandwidth between 
cells covering a few blocks each. In individual buildings with high populations of mobile 
nodes, one might even imagine a per-office cellular network, where each office has the full 
bandwidth of a base station available. However, due to the unpredictable nature of mobility, 
even such well-supported locales may see transient demand beyond that for which they 
were designed. 

The intermittent nature of mobile networks implies that while mobile clients should not 
be the true home of data, neither can they be continuously dependent on servers for support. 
Mobile clients must be capable of operating disconnected, perhaps for extended periods of 
time. This eliminates systems that assume constant connectivity such as Wit [84] and the 
Infopad [70]. While such systems provide interesting in-building or campus-area solutions, 
they do not apply to wider use. 

Systems such as the Pilot [80] are designed to operate isolated almost exclusively, with 
only infrequent connection to a network. However, taking advantage of connectivity when- 
ever possible is to the client's advantage. Both the commercial and research worlds have 
turned to this often-connected model for applications such as package tracking, the Coda 
File System [67], and Bayou [77]. These systems use bandwidth when it is available, but 
can cope with disconnection when it is not. 

The overlay argument easily extends to mobile infrastructure in general. Consider 
printer availability. When visiting a university computer science department, there are a 
variety of printers locally: large-format, high-resolution, color, and so on. In an airport, 
there may be only a fax machine or perhaps a low-quality printer available. The concentra- 
tion of users in a given area will drive the degree of infrastructural support. 
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This highly variable infrastructure can have a severe impact on mobile applications and 
users. As a mobile client's circumstances change, the resources available to it will change as 
well; such change is unpredictable and can be dramatic. The client must react to decreased 
resource availability, and should take advantage of increases. Such reaction, adapting to 
changes in the supply of resources, is widely recognized as central to the support of mobile 
computing [19, 23, 66, 78, 85]. This notion of adaptation is defined in Section 2.3. 

2.2   Demands on Mobile Clients 
The demands placed on a mobile client are a function of the applications run by that client. 
There are two broad application characteristics that must be supported by such a client, 
application diversity and concurrency. These two requirements form the basic needs of a 
platform for mobile computing, and further motivate the need for such a platform to be 
adaptive. 

2.2.1   Application Diversity 

Mobile clients operate in a wide variety of locations, and therefore serve a wide variety of 
needs. For example, consider a salesperson who travels to customer sites. When arriving in 
a new city, the salesperson needs information about contacts in that city as well as restau- 
rants, weather, and the like. While at the customer site in that city, the salesperson will 
need access to company resources such as inventory, pricing, and shipping information. 
The limited resources available to a mobile host, combined with the time-varying, shared 
nature of this data, suggests that a mobile node will have to interact with remote services. 

A mobile user is likely to expect a rich set of such services — not just text, but also 
maps, video, audio, and so forth. In other words, data used by a mobile client is diverse. 
This is not strictly a function of mobility, but rather a general trend. 

This data may be stored in one or more general-purpose repositories such as file servers, 
SQL servers, or Web servers. Alternatively, it may be stored in more specialized repos- 
itories such as video libraries, query-by-image-content databases, or back ends of geo- 
graphical information systems. These servers and their clients have substantial semantic 
knowledge about the data items on which they operate. In many cases, such knowledge is 
necessary for efficient handling of a particular data type. For example, it is useful to know 
that video frames need not be resent if they are lost, since they will arrive too late to be of 
use. In contrast, database updates must be sent reliably. 

Each distinct type of data places different demands on the mobile host's resources. 
For example, video data is relatively simple to render, since it uses compression methods 
designed for simple decoding. However, even with compression, video is expensive in 
bandwidth. Map data, on the other hand, is often entirely abstract, and rendering it into an 
image is computationally expensive, but the data itself is small and easily shipped. 
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2.2.2   Application Concurrency 

The ability to execute multiple, independent applications concurrently is vital. Although 
this ability is taken for granted on desktop systems, there continues to be skepticism about 
its value in mobile clients. This skepticism is fueled by the popularity of devices such as 
the Pilot and other PDAs [5], which execute only one application at a time. 

Despite the success of such devices, it seems clear that many mobile users will find 
it valuable to run background applications in addition to the foreground application that 
dominates their attention. For example, an information filtering application may run in 
the background monitoring data such as stock prices and alerting the user as appropriate. 
As another example, an application used in emergency response situations may monitor 
physical location and motion, and prefetch damage-assessment information for the areas to 
be traversed shortly. 

The need to run applications with diverse resource needs concurrently suggests that 
mobile clients must be general-purpose computing engines, roughly equivalent to current 
desktop systems. Concurrent applications also place unique demands on a mobile client, 
which is already resource-poor. To mediate between conflicting resource demands, there 
must be some central point of control; without it, no opportunity exists to arbitrate between, 
and optimize for, multiple applications. 

In the literature, adaptation has been motivated by variations in the supply of resources 
to a mobile client. However, varying demand for those resources, generated by diverse, 
concurrent applications also influences adaptation decisions. 

2.3   Adaptation 

The variable supply of resources, as well as the differing demands on them, suggest that 
the client must adapt to these changes. However, this broad notion of adaptation requires 
definition. In what sense does a mobile system adapt? Which parties in the system are 
responsible for adaptation decisions? 

This section first defines adaptation as the trading of resources, either for other re- 
sources or for some measure of quality of accessed data. The section then explores models 
of adaptation — ways of partitioning adaptation decisions between system and application, 
and explores which of these models most effectively supports the demands outlined in Sec- 
tion 2.2. The section concludes with a discussion on evaluating adaptive systems through 
the property of agility. 

2.3.1   The Nature of Adaptation 

Mobile clients, through the constraints of mobility and the nature of the applications run- 
ning on them, experience vast swings in the supply of and demand for resources. As the 
resources available to mobile applications change, they may wish to change the way in 
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which they access data to either consume less of some newly-limited resource, or take 
advantage of a sudden abundance. 

One way to change resource consumption is to trade one resource for another. For 
example, compressing data before shipping spends processing power to save bandwidth. 
A similar trade-off between computation and bandwidth is to ship only deltas of slowly 
changing data rather than re-ship the entire item with each change. Such a scheme is used 
in Banga's optimistic Web deltas [8]. 

Techniques that trade resources for one another are transparent to applications and 
users. The data delivered to them is the same, whether or not the trade-off is made. How- 
ever, such trade-offs may not be sufficient, particularly on resource-poor mobile hosts; there 
may not be enough of any resource to provide adequate service without some degradation 
in the quality of data. The remainder of this section defines first what is meant by full 
quality, and then a notion of degradation. 

For any data item, there is a representation of that item that is the most current, con- 
sistent, and detailed. For example, a full color, full frame-rate video stream that has been 
compressed by a lossless algorithm would be such a representation. We call such a full- 
quality representation the reference copy ofthat data item. The reference copy might not be 
physically stored on any particular server; it may be a composite of many different replicas, 
or it may exist only in the abstract because the item is generated on demand by a server. 

When resources are sufficient, a mobile client may be able to operate with data indistin- 
guishable from its reference copy. If some resources vary only slightly, the client may be 
able to trade other resources to maintain use of a reference-quality copy. However, when 
resources become so scarce as to make such high quality impossible, some degradation will 
be inevitable. 

We define the fidelity of a data item presented on a mobile client as the degree to which 
the quality of the presented item matches that of the reference copy. Since there may be 
many factors that make up the quality of a particular data item, fidelity has potentially many 
different dimensions. 

One dimension of fidelity that applies to all data items is consistency. Systems such 
as Coda, Ficus [59], and Little Work [29] cope with mobility solely by relaxing the con- 
sistency of files in a file system. Bayou applies similar techniques to the very different 
consistency model of databases. 

These systems expose potentially stale data when network connectivity is poor or non- 
existent, and allow conflicting updates that would not occur in the presence of a stronger 
consistency model. For example, when Coda clients are disconnected, they read and update 
only replicas of files that are cached locally. If a server replica is updated, the client does not 
see the update, and may potentially allow a conflicting update. Stale files are not replaced, 
nor are conflicts detected, until the client is re-connected. When connectivity is present, 
but too weak to maintain strict consistency, the window of vulnerability for stale reads and 
conflicting updates widens adaptively with network speed [50]. 

Since the quality of data is type-dependent, other dimensions of fidelity are also depen- 
dent on the type of data to be degraded. For example, video data has at least two dimensions 
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in addition to consistency: frame rate and image quality of individual frames. One can re- 
duce bandwidth requirements by reducing frame rate, while changing the compression of 
individual frames changes both bandwidth and computational requirements. Topographi- 
cal maps and other spatial representations have dimensions of feature sets and minimum 
feature size. For example, one can exclude all features other than rivers and roads, or 
only examine roads which are divided highways or larger. For telemetry data, appropriate 
dimensions include sampling rate and maximum reporting delay. 

These dimensions of fidelity are natural axes along which mobile clients can adapt 
resource usage to fluctuating supply and demand. By choosing to change one or more 
dimensions of fidelity in accessing or storing data, the client in turn can change its con- 
sumption of resources. Furthermore, degrading along different dimensions may conserve 
different resources. By taking into account what dimensions of fidelity are important to the 
task at hand, as well as the availability of various resources, the client can make informed 
decisions on how to adapt data access. 

2.3.2   Models of Adaptation 

What party is responsible for making adaptation decisions? Should responsibility he with 
the operating system, the applications, or some combination of the two? This section ex- 
plores each of these three possibilities, and argues that only a collaborative approach be- 
tween system and applications can support the demands of concurrent, diverse applications. 

Application-Transparent Adaptation 

In the first model of adaptation, the system is wholly responsible for adapting to changes in 
the supply of and demand for resources. This model, called application-transparent adap- 
tation, is embodied in systems such as Coda and Bayou. The system automatically handles 
changes in connectivity between hosts, and transparently decides when to propagate up- 
dates or invalidate and re-fetch stale data. Individual applications have no say in how to 
make use of available bandwidth, though applications in either system can provide specific 
functionality, such as conflict resolution. 

Systems which perform application-transparent adaptation provide three important ben- 
efits: they allow legacy applications to run unmodified, they do not complicate the program- 
ming model for applications, and they provide a central point of resource control. This last 
benefit is a consequence of making adaptation decisions at a single place. 

Despite these benefits, application-transparent adaptation does not adequately support 
application diversity. Specifically, it cannot support two applications that may wish to 
make different adaptation decisions for the same data. Since the system makes decisions in 
isolation, only one decision can be made for a given data item in a given situation. 

As an example, consider two applications that operate on the same piece of video data: 
a video player and a scene editor. The player's primary goal is to preserve correspondence 
between movie time and real time, while secondarily maintaining quality.  In times of 
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plentiful resources, the player can meet both goals. When bandwidth is scarce the player 
may reduce frame quality and drop frames to maintain the pace of the movie. 

The scene editor, in contrast, must fetch every frame in order to provide precise cuts 
and splices in the final product. In times of scarce bandwidth, it is willing to fetch frames 
late in preference to dropping them. 

It is hard to see how any single policy can adequately service both of these applications' 
needs, even though they are accessing exactly the same data. Thus, regardless of the sys- 
tem's decision to change the fidelity of the stream it is retrieving, either the player or the 
editor - and quite possibly both - will not be satisfied. Since adaptation decisions are made 
without regard to an application's needs in application-transparent systems, such systems 
cannot possibly support diverse applications. 

Laissez-Faire Adaptation 

At the opposite end of the spectrum, applications are solely responsible for coping with the 
consequences of mobility. This approach, referred to as laissez-faire adaptation, has been 
taken by commercial software such as Eudora [60]. More recently, it has been pursued 
by research systems such as McCanne's RLM [44] and Cen's video player [31]. In such 
systems, applications monitor the availability of resources, and make their own adaptation 
decisions in isolation of other applications or the system. 

The laissez-faire approach provides two substantial benefits. First, no system support 
is required — an essential attribute of commercial systems where the operating system is a 
fixed commodity. Second, applications get precisely the adaptation behavior they want; no 
approximations are necessary. 

However, the laissez-faire approach, without a single point of resource control, does not 
support application concurrency. Applications, by virtue of being external to the system, 
are not well-positioned to monitor the availability of resources; what they see individually 
is often not representative of the machine as a whole. Furthermore, since each applica- 
tion reacts to changes in resource availability independently, two such applications running 
concurrently are likely to perform poorly. 

As an example, consider two video players with laissez-faire adaptation, running con- 
currently on a mobile client. In reaction to a small but significant increase in bandwidth, 
both applications are likely to try to increase fidelity, even if there is only enough bandwidth 
for one to do so successfully. Without some amount of central coordination, it is unlikely 
that these two video players can seamlessly coexist. 

Application-Aware Adaptation 

The middle ground between these two extremes is a collaborative effort between system 
and applications. The nature of this partnership is a consequence of end-to-end consider- 
ations [63]. The system is best positioned to know what is available to the mobile client. 
Thus, is responsible for monitoring resource availability, enforcing resource allocation de- 
cisions, and optimizing the use of client-wide resources. An individual application, how- 
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ever, is the only party which can know fully what its own needs are. Hence, an application 
must be informed by the system of significant changes in the availability of resources, and 
react to those changes in whatever way it sees fit. 

This division of responsibility directly addresses the issues of application diversity and 
concurrency. Diverse applications are accommodated by allowing applications to deter- 
mine how changing resource availability should affect fidelity levels. Concurrent applica- 
tions are supported by allowing the system to retain control of resource monitoring and 
arbitration. Application-aware adaptation is the only adaptation model that can support the 
sort of mobile computing envisioned in Section 2.2. 

2.3.3   Comparing Adaptive Systems 

Given two adaptive systems — both of which support concurrent, diverse applications — 
how does one compare them? There are two issues at hand. First, how long does it take 
each system to make an adaptation decision? Second, when that adaptation decision is 
made, is it the right one? 

The latter question is one of policy; the correct adaptation decision depends on several 
things, not the least of which is user preference. The individual application goals, combined 
with the overall goals of the machine, dictate which of many possible adaptation decisions 
is the best. The former question, the time to react to change, is measured by a metric called 
agility. 

Sound adaptation decisions require accurate and timely knowledge of resource avail- 
ability, and quick arrival at the correct decision given that knowledge. Ideally, a mobile 
client should always have perfect knowledge of current resource levels. In other words, 
there should be no time lag between a change in the availability of a resource and its de- 
tection. Further, if this change is sufficient to warrant a change in client behavior, that too 
should be accomplished without delay. 

Of course, no physical system can meet this ideal. The best one can hope for is to build 
close approximations through good design and engineering. Agility is the property of an 
adaptive system that measures the speed and accuracy with which it detects and responds 
to changes in resource availability. When changes are large and erratic, only a highly 
agile system can function effectively. In more stable environments, less agile systems may 
suffice. Agility thus also determines the most turbulent environment in which a system can 
function acceptably. 

Agility is not a simple scalar metric; it is a complex property with many components. 
One source of complexity is differing sensitivity to changes in different resources. For 
example, a system may be much more sensitive to changes in network bandwidth than to 
changes in battery power level. This could be due to fundamental limits in the ability to 
measure battery life, or something as simple as checking bandwidth more frequently than 
power. 

Another source of complexity is differing origins of changes in resource availability: 
changes in supply or demand. For example, consider network bandwidth. The bandwidth 
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available to a mobile client might change because it has moved from a well-served locale 
to a more tenuously supported one. The resulting drop in bandwidth is a change in supply. 
In contrast, an application on the client might suddenly increase the amount of data it is 
attempting to fetch over the network. From the perspective of the system, this is a change 
in the demand for bandwidth. Since different mechanisms may be involved in detecting 
these two different causes of change, it may be necessary to distinguish supply-side and 
demand-side components of agility. 

One can characterize the core adaptive system as a collection of reactive components, 
two components per resource. One of these components measures changes in the supply 
of that resource, the other measures change in demand. Viewed in this way, the agility of 
each component is a function of its rise time; the time it takes to recognized some partic- 
ular change in resource availability. The goal of maximal agility is served by providing 
components with minimal rise times. 

The goal of maximizing agility is pursued at the sacrifice of stability, the ability of the 
system to ignore transient changes . Clearly, this will not be acceptable in all situations. 
However, the core system must be as agile as possible, as it limits the agility of all applica- 
tions run on that system. When stability is required, it should be provided in the context of 
individual applications. This notion is analogous to the construction of electrical circuits 
for amplification. The core of the circuit — the operational amplifier — should be con- 
structed to provide infinite gain; the surrounding circuit adds what stability may be required 
by the particular task at hand. 

2.4   Summary 

This chapter presents three intrinsic constraints on mobile systems: they are resource-poor, 
they are subject to heightened security and robustness concerns, and their supporting in- 
frastructure is highly variable. These constraints, particularly the last one, require that 
mobile systems somehow adapt to their environments. This adaptation takes the form of 
trading quality of data for resource consumption; more formally, it is trading fidelity for 
performance. 

The nature of this adaptation is guided by two key requirements of mobile systems. 
First, they must support a diverse range of applications, with potentially different adap- 
tive needs. Second, they must support concurrent, competing applications. These two 
requirements lead to providing adaptation as a collaborative approach between the system 
— which monitors and controls resources — and applications, which set adaptation pol- 
icy. If the system were solely responsible for adaptation, then diverse applications could 
not be effectively supported. Likewise, an application-only approach would not effectively 
support concurrent applications. 

Finally, the chapter addresses the issue of comparing adaptive systems. There are two 
axes along which such comparisons are made. First, does the system make correct adaptive 
decisions? Second, does the system arrive at these decisions quickly in the face of resource 
changes? The former is a matter of policy. The latter is a quantitative measure called agility. 
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To operate in a turbulent environment, a mobile system must be highly agile to change in 
demand for and supply of the resources making up that environment. 
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Chapter 3 

Design 

This chapter presents the design of Odyssey, with an emphasis on the provision of agile 
application-aware adaptation. The chapter begins by presenting the background to Odys- 
sey's design. This background consists of the principles guiding the design of Odyssey, as 
well as the systems from which it borrows design elements. 

The chapter then presents an overview of Odyssey's architectural components. It does 
so by outlining how an adaptive application would make use of these components during 
the course of its execution. After this brief introduction, the chapter presents each of these 
architectural components in more detail. It concludes with a summary of key points from 
the chapter. 

3.1    Background 

Odyssey's design was guided by a small set of principles, and influenced by the systems 
that came before it. This section first describes these guiding principles and how they affect 
Odyssey's design. It then describes what design elements were borrowed from Odyssey's 
philosophical ancestors, AFS [28] and Coda. 

3.1.1    Guiding Principles 

There are three principles that influenced the design of Odyssey. The first principle is 
minimalism. Rather than using a clean-sheet approach, Odyssey was designed as a minimal 
set of extensions to an existing system. This was done with the goal of understanding which 
abstractions would have to be added to a stock operating system to provide application- 
aware adaptation. 

This goal of minimalism is pervasive, and affects many design decisions throughout the 
system. Whenever possible, Odyssey makes use of existing features in the system rather 
than invent new ones. Any new functionality or mechanisms that have been added to the 
system have been designed to be consistent with existing idiom. This reduces the number 
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of fundamentally new abstractions that an application must accept in order to make use of 
application-aware adaptation. 

The base system in which Odyssey has been built is NetBSD, a variant of the 4.4 BSD 
UNIX operating system [46]. NetBSD source code is publicly available without encum- 
brance, thus allowing free distribution of derivatives. The 4.4 BSD family of operating 
systems are very similar. They have a close, common ancestor in the 4.4BSD-Lite release, 
and have collectively met with wide acceptance in the systems research community. 

The second principle is to provide mechanism rather than prescribe policy. This is di- 
rectly reflected in the notion of application-aware adaptation itself. Applications are free to 
decide the fidelity at which data should be accessed given a particular set of environmental 
conditions. Odyssey provides the mechanisms to discover the state of the environment, 
and to affect fidelity changes. One important goal of building applications on top of Od- 
yssey is to understand precisely which features are properly policy, and which can remain 
mechanism. 

The third principle is to respect the end-to-end argument. Functionality or knowledge 
that must be at outer layers of the system for correctness should be present there alone. 
Odyssey duplicates these at inner layers only when there are either distinct performance 
advantages, or some fundamental capability is enabled by it. For example, an application 
must know the degree to which resources are available to it to correctly decide on a fidelity 
level. However, placing resource estimation in the system enables intelligent coordination 
between concurrent applications. 

3.1.2   Historical Context 

Many of the design decisions made in Odyssey are inherited from two previous systems: 
Coda and the Andrew File System, or AFS. Coda is a direct descendant of the second 
version of AFS, and borrows come code from it. Odyssey makes use of only a small subset 
of the code from these systems, but does inherit much of their design philosophy. This 
section discusses Coda and AFS, and how these two influenced the design of Odyssey. 

Scalability, both in terms of performance and administration, is the central focus of 
AFS. Coda adds two goals in support of mobile computing. The first of these is to pro- 
vide high availability in the face of network or server failures. The second is to provide 
application-transparent adaptation in the face of varying network quality. 

AFS and Coda provide these capabilities within the context of the UNIX file system. 
They are transparent to applications, and behave much like a local file system. Both systems 
were designed for ease of development and experimentation, possibly at the expense of 
performance. For example, the bulk of these systems were implemented at user-level, at 
the cost of extra overhead in kernel boundary crossings and data copying. 

To provide both scalability and security, these systems follow a strict client-server par- 
titioning, with a small collection of dedicated server machines, and a larger group of un- 
trusted clients. While the former are managed centrally and are physically secure, the latter 
are assumed to be owned by individuals and thus insecure. 
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For administrative simplicity, both AFS and Coda provide a single, global name space. 
This global name space is mounted at the same point in each client's local name space. 
Such uniformity provides name portability across machines and users. This single, global 
name space is broken into subtrees called volumes [72]. A volume is a collection of files 
that are viewed as a unit for administrative purposes. It is the unit for which quotas are 
enforced, is stored on a single server, and is backed up or relocated as a unit. 

In order to build the complete name space, volumes are glued together at mount points, 
which themselves may occur within volumes. These are similar to the more familiar notion 
of UNIX file system mounts; however, the presence of a mount point and the name of 
the volume thus mounted are part of the global state rather than a side effect of client 
action. While the name space provided by Coda or AFS arises directly from the volume 
and mount point structure, it is seamless from the perspective of applications. Odyssey's 
design preserves the notion of a global name space, and inherits the volume substructure 
imposed on it. However, as discussed in Section 3.3.1 the name space is no longer entirely 
seamless; it is exposed through these tomes. 

In both Coda and AFS, the global name space is mounted in the client's local name 
space as a new VFS file system [40]. Clients cache copies of files from servers, and then 
operate on them locally. Updated files are shipped back to servers as bandwidth permits. 
This process is managed by a local cache manager called Venus in both systems. 

Neither Coda nor AFS place Venus in the kernel, but rather at user-level. This was 
done to simplify development and debugging, at a modest performance cost. To provide 
integration with VFS, these systems use a small interceptor which receives file operation 
requests from the VFS layer, and forwards them to Venus. 

Odyssey borrows the notion of a user-level implementation as well as the code provid- 
ing the in-kernel interceptor. However, Odyssey imposes some internal structure on the 
user-level cache manager as described in Sections 3.3.4 and 3.3.6. 

3.2    Component Overview 

Odyssey has incorporated a set of basic components to provide application-aware adapta- 
tion both effectively and efficiently. This section briefly outlines these basic components; 
they include abstractions, API extensions, and functional responsibilities. The discussion is 
centered around how an adaptive video player might make use of Odyssey; this serves as a 
simple example to illustrate Odyssey's key components and their interactions. Section 3.3 
describes the design of each of these components in detail. 

The video player adapts by trading fidelity for performance. Since fidelity is a type- 
specific notion, Odyssey must have some way of knowing the type of individual objects. It 
does so by associating a single type with all of the items in a volume. 

In order to choose a particular fidelity level at which to play movies, the video player 
must know the current state of its environment. Odyssey must therefore provide applica- 
tions with a way to name the resources that make up that environment; for example, the 
video player must be able to ask about the bandwidth available to the video server. 



20 CHAPTER 3. DESIGN 

As the bandwidth to the video server changes in some significant way, the player will 
choose a different fidelity level. In application-aware adaptation, the video player does 
not directly monitor resource availability; that is the system's responsibility, as it is best 
positioned to do so. Furthermore the player need not know of every minute change in 
bandwidth; only sufficiently large changes will cause a change of fidelity. Odyssey provides 
an API extension called a resource request, which applications use to tell the system which 
resource changes would be significant. 

The system-level component that monitors resource availability is called the viceroy. 
As the video player executes, the viceroy estimates the bandwidth available to the video 
server. If the bandwidth ever goes above or below the viceroy's requested bounds, the 
viceroy notifies the player of the new bandwidth level via an upcall. 

When it receives the upcall, the video player will raise or lower the fidelity at which it is 
playing the movie. A change in fidelity may change the way in which data is represented. 
Thus, the application must be aware of fidelity changes. However, the end-to-end argument 
also dictates that the system components on the client should also have access to type 
information. The system provides the single point of resource control, and thus makes 
caching, transport, and consistency decisions. The type of an object may well influence 
those decisions. For example, it may be cheaper to recompute some item than to refetch it, 
changing the cost of flushing it from the client's cache. 

Odyssey incorporates a set of components, called wardens, to provide type-specific 
functionality at the system level, one warden per type. Together with the viceroy and the 
interceptor, they form Odyssey's system support. There are potentially many types, each 
with potentially many fidelity-changing operations. Rather than attempt to enumerate each 
of these operations in the API, Odyssey instead provides a single, general mechanism called 
type-specific operation. 

Together, these components form Odyssey's client architecture, shown in Figure 3.1. 
Odyssey focuses on the client for three reasons. First, applications are the entities responsi- 
ble for forming adaptation policy; they make the decisions. Good software practices require 
co-locating the support for those decisions. Second, adaptation decisions are based on the 
availability of resources to a client application, from the application's point of view. The 
best place to provide support for such estimation is thus also at the client. Third, altering 
fidelity often requires very different data handling on the part of the client.1 

3.3   Detailed Design 

This section gives detailed descriptions of each of the components introduced in Sec- 
tion 3.2. Conceptual details, including API specifications, are spelled out in this section, 
but implementation details are left for Chapter 4. 

'Of course, servers must also handle data differently as the fidelity ofthat data changes. However, this is 
not the focus of Odyssey per se, but rather can be determined solely between wardens and servers. 
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Figure 3.1: Odyssey Client Architecture 

3.3.1   Tomes: Adding Types to Data 

As with AFS and Coda, Odyssey provides a single, global name space to all clients. This 
name space is divided into sub-spaces which are the unit of administration in the repository. 
In order to simplify implementation and administration, these sub-spaces are also the unit 
of type. Borrowing from Odyssey's predecessors, they are called tomes, or typed volumes. 

Each item within a given tome is of the same type, and a tome is stored in its entirety on 
a single server. Like the volumes of AFS and Coda, tomes are mounted within other tomes 
to form the global name space. This coupling of type to volume simplifies the administra- 
tion of Odyssey. Good software practices suggest that objects of different type be served 
by different logical servers.2 If a single volume were allowed to contain objects of multiple 
types, then that volume would be stored at multiple servers. Administrative tasks such as 
moving the volume would either require collusion between the servers storing the volume, 
or more likely could not be done atomically. 

On the other hand, the binding of types to tomes exposes the types of objects in the 
name space. For example, a single directory cannot contain both video clips and map data; 
such exposure of type in the name space is obviously undesirable. However, adding a layer 
of indirection for naming, such as X.500 [12], or making use of aggregating objects, such as 
HTML documents, which name other objects transparently, would decouple naming from 
types, while preserving both the benefits of a convenient unit of administration as well as 
some logical directory structure. 

An example name space of six tomes appears in Figure 3.2. The first tome, rooted at 
Odyssey, is the root volume; a distinguished tome that is well-known to all clients. This 
tome is a standard file system tome. In this example, there are two other standard file system 
tomes, rooted at bnoble and satya, that hold the personal data for those two users. All 
of the other three tomes have distinct types. The tome rooted at www provides access to 
the World Wide Web. The tome rooted at quicktime contains quicktime-format video 
streams; the tome rooted at search is a database providing query and search capabilities 
over the movies in the quicktime tome. 

2Of course, a single physical server may host more than one virtual server, each of a different type. 
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ZJ Standard File tomes 
□ QuickTime tome 
LJ HTML tome 
E3 Video Database tome 

This figure depicts a simple example of an Odyssey name space. There are six tomes: 
three standard file system tomes, one video tome, one database tome indexing that video 
collection, and a tome providing access to the World Wide Web. From a client's perspec- 
tive, all of this data is present in a single, global name space. 

Figure 3.2: Example Tomes 

Odyssey, unlike AFS and Coda, does not provide a strictly hierarchical name space. For 
example, the video database tome in Figure 3.2 provides a query-based naming scheme, 
while the World Wide Web tome uses URLs as names. Such extensions to the name space 
are similar in spirit to the Semantic File System [25]. The mechanism supporting these 
extensions is described in Section 3.3.6. 

3.3.2   Resources: Naming the Environment 

As they execute, applications adapt to their environment. To do so, they must have some 
way of naming salient features of the environment to which they adapt. The features of an 
Odyssey client's environment are the set of resources available to that client. For example, 
battery power is a resource, as is disk space available or the bandwidth along a particular 
network connection. As time progresses, the degree to which these resources are available 
will change; the battery will have drained, disk space may become more plentiful because 
some cache files were flushed, and the bandwidth may have gone up or down. 

The environment of an application at any given point in time, then, is the degree to 
which each of the set of client resources is available to it. Each resource in the system 
is named by a unique identifier. The availability of each resource is represented in a 32 
bit number, expressed in units appropriate to the resource. The units chosen should allow 
for a sufficiently large range and small granularity. Furthermore, they should not require 
an application to calibrate them to a particular machine in some way; if such calibration 
is necessary, the system should perform it. So, battery power is expressed in seconds of 
operation remaining, rather than joules; if the latter were used, an application would also 
need to know the rate at which the machine consumed power. 

Resources are divided into two classes, generic and type-specific. Generic resources 
are meaningful to the client as a whole, while type-specific resources are meaningful only 
in the context of a specific kind of data. For example, battery power and bandwidth are 
both generic resources; they have meaning regardless of the type of data being accessed. 
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In contrast, the number of pre-paid queries on a particular database is a resource of interest 
only to applications using that database. 

Resources are further classified by whether they are universal, or item-specific. Uni- 
versal resources are defined without need for a frame of reference, while item-specific 
resources must be evaluated in the context of a particular Odyssey object. For example, 
battery fife is a universal resource; there is no frame of reference needed to evaluate it. 
Bandwidth, on the other hand, is item-specific. Bandwidth is an end-to-end measure of 
a particular path from client to server. Paths to different servers may well have different 
bandwidths. Thus, bandwidth is estimated with respect to a particular Odyssey object; 
the result is the bandwidth available on the path to that object's server. By definition, all 
type-specific resources are also be item-specific. 

Universal Item-Specific 
Resource                       Units Resource                    Units 
Disk Cache Space          kilobytes Network Bandwidth   bytes/second 
CPU Cycles Available   SPECint95 Network Latency        microseconds 
Battery Power                seconds 
Money                           cents 

This figure lists the generic resources in Odyssey's design, and the units in which their 
availability is measured. The first column lists universal resources. The second lists the 
resources that are item-specific. 

Figure 3.3: Generic resources in Odyssey 

The generic resources are shown in Figure 3.3. There are four universal, generic re- 
sources: disk cache space, CPU cycles, battery power, and money. There are two item- 
specific, generic resources: network bandwidth and network latency. 

Disk cache space is the most straightforward of the universal resources. Facilities for 
measuring available disk space already exist. Furthermore, applications can make obvious 
use of such measurements; when space is plentiful, applications can ask for more aggressive 
caching and prefetching policies than they might otherwise. 

Available computational power is also of obvious importance, particularly in the face of 
adaptation. Many adaptive strategies involve compression, approximation, or regeneration 
of data. However, there may not be enough CPU available to the client to perform such 
functions. However, a simple measure such as fraction of idle time is insufficient; it would 
require the application to calibrate to the total processing power of the machine. Instead, 
Odyssey uses SPECint95 units to express CPU availability. This measure is not perfect, but 
it is a step in the right direction. 

Mobile machines are rarely connected to a permanent power source, and are there- 
fore highly dependent upon batteries. Knowing the state of those batteries is important 
for several reasons. There are several uses for battery information beyond saving critical 
information when a power failure is imminent. For example, clients can take advantage of 
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variable-power radios. Using more power when transmitting can reduce the bit-error rate on 
the channel, but should be done only when power is plentiful. Power is expressed in units 
of seconds of operation, rather than joules, for much the same reason that available CPU 
is not measured in idle time. A unit such as joules requires the application have machine- 
specific knowledge; some machines may require more energy to operate than others. In 
contrast, seconds of operation is a machine-independent unit. 

Money is of increasing importance to mobile clients. For example, cellular networks 
have steep costs that are often difficult to compute. Other remote services, such as printers 
and file servers, may charge foreign clients in exchange for their use. As infrastructures 
for electronic commerce improves, applications will increasingly have direct control over 
money. An application might make different decisions about what services to use given the 
cost of those services in light of user preference and budget. 

The two item-specific, generic resources — bandwidth and latency — are measures 
of network quality. These quality metrics are end-to-end measures of an entire network 
path from the client to server, and can vary significantly from server to server. These two 
resources, then, must be item-specific; they must be measured with respect to the server 
storing a particular object. 

Adapting to bandwidth is the focus of the current Odyssey prototype. When band- 
width drops, time-critical data must somehow be degraded to maintain performance goals; 
when bandwidth rises, quality can be increased. Latency information can be used to adjust 
buffering requirements on the client. It may also be used to determine how aggressive an 
application might be in adapting, since it is a measure of the minimum server response 
time. 

Odyssey's design currently encompasses only a single value for bandwidth and latency 
between a client and a particular server, rather than different measures for inbound and out- 
bound quality. Thus, Odyssey implicitly assumes that network performance is symmetric. 
The problem of asymmetry in networks, both mobile [7, 54] and wired [41], is a topic of 
recent interest. Despite this, the assumption of symmetry has proven adequate thus far. 

3.3.3   Resource Requests: Expressing Expectations 

Applications do not need continuous knowledge of all resources. It is likely that any given 
application will be concerned only with a small subset of all resources. Furthermore, most 
small changes in this set of resources will not be sufficient to cause a change in fidelity. 

For example, consider a video player which changes the fidelity of its video stream as 
bandwidth rises and falls. For any given bandwidth level, the player selects a particular 
fidelity level to meet its performance constraints. There is an upper bound above which the 
player will raise fidelity. Likewise, there is some lower bound below which the player must 
lower fidelity. Within this range, called a window of tolerance, the player will not change 
its strategy; the exact value of bandwidth within this window is unimportant. 

At any instant such windows exist for each resource of interest to an adaptive appli- 
cation. This collective set of windows are the expectations that the application has of its 
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environment. So long as these expectations are met, the application will not change the 
fidelity at which it is accessing data. 

If one of the resources in the set of expectations leaves its window of tolerance, the 
application must be told of its new value. The application is then free to choose a new 
fidelity level, and will pick a new window of tolerance on the changed resource. If the 
application should decide it no longer wishes to be notified for a particular resource, it can 
cancel a previously placed request. 

Applications make resource expectations known to the client through resource requests. 
The system remembers these expectations, and promises to notify the application if any of 
them are violated. There are two forms of request; their function prototypes, along with 
associated types, appear in Figure 3.4. 

Both forms of request follow the same general pattern. The application passes a window 
of tolerance for a particular resource. The viceroy checks the availability of that resource; 
if it is within the declared bounds, the viceroy returns a request identifier in the result 
parameter. This identifier represents a promise by the viceroy to inform the application 
should the resource stray beyond the stated bounds. 

If, on the other hand, the viceroy determines that the resource is outside the tolerance 
bounds, the request returns ODY_ENOTINWINDOW, and places the current availability of 
the resource in result. The application is expected to try again with a window encom- 
passing the current availability. 

In addition to resource bounds, requests specify an Odyssey object, either by by path- 
name or file descriptor. The object is used as the context in which to evaluate the availabil- 
ity of item-specific and type-specific resources. The pathname form is necessary because a 
process might not wish to go to the expense of opening an object in order to place requests 
on associated resources. Likewise, the file descriptor form is required for processes which 
inherit open file descriptors from parents without having the pathnames that correspond to 
them. 

To safeguard against out-of-date clients, requests carry version information both for 
generic and type-specific interfaces. This is provided not only for the usual reasons of de- 
fensive programming, but also because the type-specific portions of Odyssey are expected 
to change over time. 

In the event that an application no longer wishes to be notified for a previously granted 
request, it may cancel it. An application may also replace an old window of tolerance 
with a new one simply by placing a new request. The system allows only one registered 
window per resource on behalf of a single application, since multiple, overlapping win- 
dows can always be combined into the single tightest set of bounds on the current resource 
value. All requests are implicitly cancelled on process exit, to avoid the cost of sending a 
notification to a process that doesn't exist. 

Unlike signal handlers, resource windows are not inherited across calls to fork. The 
resources available to the original application will be spread across both the parent and 
child of the fork, commonly invalidating the parent's window immediately. Therefore, the 
child is expected to place a new lower window.  As with signal handlers, all registered 



26 CHAPTER 3. DESIGN 

struct ody_vers { 
unsigned int32_t 
unsigned int32_t 
unsigned int32_t 

}; 

ov_gs; 
ov_type; 
ov_tsvnum; 

void (*ody_reg_fn_t) (IN int32_t reqid, 
IN u_int32_t rsrc, 
IN int32 t val); 

struct ody_reg_des { 
u_int32_t 
struct ody_vers 
int32_t 
int32_t 
ody_reg_fn_t 

ord_resource; 
ord_version; 
ord_low; 
ord_high; 
ord_fp; 

int ody_request (IN char *path, 
IN struct ody_req_des 
OUT int32 t *result); 

^request, 

int ody_frequest (IN int fd, 
IN struct ody_req_des *request, 
OUT int32_t *result); 

int ody„cancel  (IN int32_t reqid); 

This figure specifies the API used by Odyssey applications to place and cancel resource 
requests. Resource requests are placed through ody_request and ody_f request; the 
latter uses a file descriptor rather than a pathname to specify the Odyssey object in whose 
context the resource should be evaluated. Requests are cancelled by the ody.cancel 
call. The remainder of the figure specifies the types used in these three calls. 

Figure 3.4: Resource Request Interface 
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windows are cleared on a call to exec; the body of code originally meant to handle the 
notification will not be part of the process after the call. 

The decision to name only one window per request is an explicit one; doing so pre- 
serves the goal of simplicity. One could implement requests passing a vector of windows at 
once, defining an N-dimensional space, with one resource per dimension. A request of two 
resources defines a rectangle within the plane, and so on. Such a form would complicate 
the handling of the request call, and unnecessarily commingle resources that, in the current 
design, are completely separate. In return for this complexity, applications could amortize 
the cost of a single system call across many requests. 

However, such a scheme does not fundamentally improve the functionality of the API. 
If one desired to, one could implement such a scheme by blocking the reception of upcalls, 
placing each of the individual requests in the vector in turn, and resuming the reception of 
upcalls. This duplicates the vector-based behavior, at the cost of additional system calls but 
at the savings of a simpler approach. 

3.3.4   The Viceroy: Controlling Resources 

To effectively manage resources in the presence of concurrent applications, the system 
must provide a single point of control for each resource. This single point for the generic 
resources is called the viceroy. The viceroy is responsible for monitoring availability of 
CPU, disk space, battery power, and money as well as the bandwidth and latency on con- 
nections to all servers. 

When an application places a request on one of these generic resources, the viceroy 
checks the version stamps and resource window for validity, and then compares the re- 
source's current availability with the window bounds. If the resource is not in bounds, an 
error code and the current value are returned. If the window is in bounds, it is remembered 
by the viceroy for comparison with future estimates of that resource's availability, and the 
request identifier is returned. 

The viceroy is also the point at which any resource reservation or admission control 
decisions must occur. The current design of Odyssey provides only for resource estimation, 
not reservation. However, stronger forms of resource management are not ruled out, and 
could be incorporated into Odyssey. 

In addition to the tasks of resource monitoring and control, the viceroy is responsible 
for all type-independent tasks on behalf of the Odyssey client. This includes object man- 
agement, operation dispatch, and the provision of a uniform communications substrate. 
Each of these are described in the remainder of this section. 

Object Management 

Each object in the Odyssey store is named by a unique identifier called an of id. The 
of id is a four-part number, identifying the type, tome, vnode number, and uniqifier; it is 
illustrated in Figure 3.5. Each type is represented by a well-known number that is glob- 
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struct ofid { 
u_int32_t 
u_int32_t 
u_int32_t 
u_int32_t 

}; 

ofid_ttype; 
ofid_tome; 
ofid_vnum; 
ofid_uniq; 

Figure 3.5: Structure of an Odyssey Identifier: ofid 

ally assigned. Within each type, tome numbers must name a single, distinct tome. Tome 
numbers may never be recycled within a type, though they may be duplicated across types. 

The third number, vnode, identifies a particular object within a tome. At any instant, the 
vnode numbers within a single tome should be unique, but they are allowed to be re-used 
by a single tome. To prevent any confusion arising from such re-use, each new object in 
any given tome must be assigned a strictly increasing uniqifier. This prevents clients from 
confusing old vnode numbers with new objects. 

This two-part object identifier is not strictly necessary; the vnode number is superflu- 
ous. The use of two numbers for object identification within a tome was inherited from 
AFS and Coda. These systems used vnode numbers for efficient object access by re-using 
slots in persistent data structures rather than resort to dynamic management of a persistent 
heap [68]. These systems also encoded semantic information in vnode numbers, using the 
low-order bit to distinguish between directories and leaf nodes. 

Operation Dispatch 

All operation requests forwarded from the interceptor are fielded by the viceroy. Each 
request names the operation to perform, along with an ofid that names the object on 
which the operation should be performed. 

As described in Section 3.3.6, every operation on an object of a given type is handled by 
a type-specific component within Odyssey. By examining the o f i d on which the operation 
is to be performed, the Viceroy forwards the operation request to the correct code compo- 
nent. The general design of these type-specific components is described in Section 3.3.6, 
as are the interactions between these components and the viceroy. 

Communications 

In order to act as the point of network control, the viceroy must provide a uniform com- 
munications substrate to the rest of the system. This substrate is connection-based, and 
provides estimation of per-connection bandwidth and latency. It also handles connection 
creation, destruction, and automatic re-establishment of broken connections; it is called the 
connection manager. 

Connections are named by <host,   service,   number>, allowing multiple con- 
nections to the same service if necessary. They are based on RPC2[65], which provides 
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both traditional remote procedure call as well as a sliding-window, selective-acknowledge- 
ment protocol for bulk transfer. All communication on behalf of Odyssey is expected to 
make use of the connection manager; without doing so, there is no single point of network 
control. 

The current focus of Odyssey is adaptation with respect to changes in network band- 
width; the connection manager's chief responsibility then is estimating available band- 
width, tracking variation in both the supply of and demand for network bandwidth. Be- 
cause Odyssey may often be used in weakly-connected environments, we rely on purely 
passive observation; Odyssey adds no traffic whatsoever to that already present. This is in 
contrast to active approaches, such as Keshav's packet-pair protocol [38]. The details of 
estimation are presented in Chapter 4. 

This estimation is built upon that performed in Coda, designed in collaboration with 
Mummert [49]. As a side effect, RPC2 records the sizes and times of requests and responses 
between client and server. These observations are recorded in two logs per connection, one 
for remote procedure call and one for bulk transfer. In Coda, each connection's logs were 
examined separately to estimate the bandwidth to each file server. Odyssey extends this 
by first collecting all logs into a master log, to accurately account for interference between 
competing connections. 

3.3.5   Upcalls: Notifying Applications 

When the viceroy detects that some resource has strayed beyond a requested window of 
tolerance, it must notify the requesting application. This notification, as shown in Fig- 
ure 3.4, carries with it the request for which the notification is being sent, the resource 
whose availability has changed, and the new availability ofthat resource. 

There are three design requirements of such a notification mechanism. First, such notifi- 
cation can happen at any time during an application's execution; thus, notifications should 
be asynchronous, requiring no application action. Second, notifications should be deliv- 
ered reliably and in a timely fashion. Third, applications should not have to subscribe to a 
particular programming model beyond the common UNIX API in order to receive them. 

This last requirement leads one directly to the signal facility; signals are asyn- 
chronous, delivered in reasonable time, and are familiar abstractions. Unfortunately, they 
carry two shortcomings rendering them unsuitable for resource notification. First, they are 
unreliably delivered; most UNIX implementations promise at-most-once delivery rather 
than exactly-once. Second, they do not provide any convenient way to pass arguments with 
them; such arguments are required for resource notification. 

IPC mechanisms, such as UNIX-domain sockets or Mach's messages [18], provide 
exactly-once delivery and the passing of arguments. Unfortunately, they also require the 
application to either frequently select on some set of file descriptors, or to make use of 
a particular thread model. In keeping with the philosophy of minimalism, Odyssey avoids 
IPC mechanisms and their associated encumbrances. 
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Instead, Odyssey adds to the kernel an upcall facility. This facility provides for asyn- 
chronous notification in the manner of signals, but adds exactly-once semantics and the 
passing of arguments. This mechanism is meant to stand apart from Odyssey, and is used 
for tasks other than resource notification; for example, it plays an important role in data 
collection. The API for handling and invoking upcalls appears in Figure 3.6. 

To simplify administration, the total set of upcalls supported by the system is parti- 
tioned into upclasses. Each upclass contains a set of related upcalls. For example, all 
upcalls relating to resource notifications belong to the same upclass. Thus, an upcall is 
named by an (upclass, upcall) pair. This partitioning allows different subsystems 
to autonomously manage their own upcalls. 

An upclass provides one or more upcalls, each named by a unique identifier. Associated 
with each upcall is an argument type, and possibly a return value type. Arguments and 
results are passed in unstructured memory buffers. Callers and callees must agree on the 
interpretation of such buffers, as the system places no interpretation on them. 

Of course, if the operating system itself supported threads, upcalls could be done away 
with. Since the application would already be party to the kernel's threading model, the 
Odyssey run-time library could spawn a thread meant only to handle resource notifications. 
However, it has been argued by Ousterhout [55] that simple event-handling mechanisms, 
such as upcalls, are preferable to threads when the full power of the latter is not necessary. 

Handling Upcalls 

To receive a particular upcall, a process must first declare its intention to handle it. This is 
done through the upcall_reg system call. The call specifies an upcall that the process 
will handle and a function to handle it. A system component responsible for the upclass in 
question will be notified of any registrations to allow for system bookkeeping. 

Upcall registration is similar to the placement of signal handlers. A successful call to 
upcall_reg returns a pointer to the previous handler, or NULL if no such handler exists. 
Registering a NULL handler for a particular upcall declares the process's unwillingness to 
continue handling that upcall. As with signal handlers, upcall registrations are inherited 
across calls to fork. After an exec, all upcall registrations held are cancelled; the body 
of code registered to handle the upcall will no longer be part of the process after the call. 
Registration changes resulting from fork and exec are made known to upclasses as a 
side effect. 

An upcall handler takes seven arguments. The first two specify the upcall for which 
the handler is being invoked, allowing a single function to handle multiple upcalls. The 
second two, argsz and argbuf, pass the arguments of the upcall to the process. The 
buffer containing the arguments is pointed to by the latter; the former gives the size of that 
buffer. 

The next two arguments, retszp and retbuf, are used to pass return values back 
to a waiting caller. The latter is the actual buffer and is created before execution of the 
handler. The former is a pointer to an integer which, on entry, gives the maximum possible 
size of the return buffer. The handler, after filling the return buffer, is expected to reset it 
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typedef  int32_t upclass_t; 
typedef  int32_t upcall_t; 

/* Upcall-handling calls  */ 

int *uc_hdlr_t) (IN upclass_t upclass. 
IN upcall__t upcall, 
IN size_t argsz, 
IN void *argbuf, 
IN/OUT size_t *retszp, 
OUT void *retbuf, 
IN int flags)); 

void *upcall_reg (IN upclass_t upclass, 
IN upcall_t upcall, 
IN uc_hdlr_t handler); 

int upcall_block(); 
int upcall_unblock(); 

/* Upcall-invocation calls */ 

int upcall_sync 

int upcall_async 

IN upclass_t upclass. 
IN upcall_t upcall. 
IN pid_t pid, 
IN s i z e_t argsz. 
IN void *argbuf, 
IN/OUT size_t *retszp, 
OUT void *retbuf); 

IN upclass_t upclass, 
IN upcall_t upcall, 
IN pid_t pid, 
IN size_t argsz. 
IN void *argbuf) 

This figure shows the interface for handling and posting upcalls, along with asso- 
ciated data types. Upcalls are partitioned into upclasses, each of which are man- 
aged independently. A process declares its intentions to handle a certain upcall with 
upcall_reg; when posted, that upcall will be delivered to the function named in the 
handler argument. Upcalls may be blocked with upcall_block, and unblocked with 
upcall_unblock 
Upcalls may be posted by either upcall.sync or upcall_async. The former blocks 
until the upcall is handled, and may then accept a return value from the callee; it may post 
to only a single process. The latter continues without blocking, and cannot accept return 
values; however, it can post upcalls simultaneously to process groups, or all interested 
processes, rather than a single process. 

Figure 3.6: Upcall Handling/Invocation Interface 
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to reflect the actual size of the result buffer. In addition to the result buffer, the handler 
is expected to return a result code much like a UNIX system call: zero for success, some 
other meaningful error code on failure. 

The final argument, flags, is used to tell the handler whether it was invoked syn- 
chronously or asynchronously. In the former case, the callee is waiting for the result from 
the handler; in the latter it is not. 

A process may block the reception of all upcalls by calling upcal l_block, and re- 
sume reception of them via upcal l_unblock. Each call to the former must be balanced 
by one to the latter; if upcal l_block is called twice in succession without an intervening 
upcal 1-unblock, upcall_unblock must be called twice to resume reception. 

Posting Upcalls 

Upcalls may be posted either synchronously or asynchronously. Synchronous upcalls may 
be posted only to a single process, and may receive results from the callee. Asynchronous 
upcalls can be posted to a single process, all interested processes in a process group, or all 
interested processes on the host. They do not receive results from the callee; rather, the 
posting process continues immediately. 

Synchronous upcalls are posted by the upcal l_sync system call. It takes seven argu- 
ments. The first two name the upcall being posted. The third, pid, is a process identifier 
that names the process for which this upcall is intended; it must be a currently running pro- 
cess that has declared an interest in the posted upcall. The next two arguments, argsz and 
argbuf pass the size of the argument buffer and the buffer itself, respectively. The final 
two arguments, retszp and retbuf, are used to obtain return values from the callee. 
The caller is responsible for allocating the return buffer, and placing the size of that buffer 
in retszp. The callee will reset retszp to be the actual size of the argument structure, 
which will not be larger than the original size. 

Asynchronous upcalls are posted similarly. However, since asynchronous callers do not 
wait for results, they need not provide result buffers. Furthermore, asynchronous upcalls 
may be sent to groups of processes rather than a single process; if pid is negative, it is sent 
to all processes in the process group whose identifier is equal to -pid and have declared a 
willingness to handle the upcall. If pid is zero, the upcall is posted to all processes on the 
host which have declared interest. 

Posted upcalls are delivered to each process for which they are intended exactly-once 
and in-order. They are also delivered strictly serially; if a process is currently handling an 
upcall, any pending upcalls will not be delivered until the in-progress upcall is handled. 

3.3.6   Wardens: Handling Typed Data 

When applications are notified of resource changes, they must change the fidelity at which 
they access data. Since fidelity is a type-specific notion, changing fidelity must also be type- 
specific. To provide such fidelity-changing operations, Odyssey incorporates a collection 
of type-specific managers called wardens, one per type. Wardens are responsible for all 
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operations on data items of their type, and communication between the client and servers 
storing those items. 

Fidelity changes could, in principle, be handled entirely by applications directly rather 
than a system-level component. It would be possible to put no type-specific handüng in 
Odyssey, and instead treat all data as an untyped byte stream. However, there are two 
compelling reasons to place some degree of type-awareness in Odyssey. 

Just as there must be a single point of control for concurrent access to any given re- 
source, there must also be a single point of control for concurrent access to any given 
object. For example, suppose two different applications request two different fidelities of 
the same object. A system component privy to both requests has an opportunity to merge 
them, improving service for one or both requesting applications. 

More generally, the wide disparity in the physical and logical properties of various 
data types requires that some form of type-awareness be incorporated into the system for 
efficient resource usage. For example, the size distribution and consistency requirements 
of data from an NFS server differ substantially from those of relational database records. 
Image data may be highly compressible using one algorithm but not another. Video data 
can be efficiently shipped using a streaming protocol that drops rather than retransmits lost 
data; in contrast, only reliable transmissions are acceptable for file or database updates. It is 
impossible to optimize for such differences without some system-level knowledge of type. 

As described in Section 3.3.4, the viceroy forwards operations on an object of a partic- 
ular type to that type's warden; this dispatch is carried out by inspecting the type field of 
the operand's of id, and forwarding the operation to the warden. 

Wardens advertise their operations to the viceroy by means of a warden table, which 
lists each function supported by the warden. The functions in this table, summarized in 
Figure 3.7 are divided into three groups: administration, general operations, and Odyssey 
extensions. Administrative and general operations are outlined in the remainder of this sec- 
tion. The main Odyssey extension, the type-specific operation, is outlined in Section 3.3.7. 

Administration functions are largely used during initialization or for debugging. Od- 
yssey may be started with any number of arguments, some for the Viceroy, others for the 
wardens. Each warden is expected to provide both a function to parse arguments as well 
as a usage message describing the arguments it accepts. Each warden must also provide an 
initialization routine to be called by the Viceroy at startup time; the warden is guaranteed 
that no operation other than argument parsing will be invoked before initialization. War- 
dens may also provide a statistics collection function, which can report usage statistics to a 
named file descriptor. 

The most important administration function, getcid, is used by the Viceroy to obtain 
the connection associated with a particular Odyssey object. Since the wardens are respon- 
sible for interactions with individual servers, they are the components that map between 
individual objects and the servers that store them. However, the Viceroy is responsible for 
fielding resource requests, including those for as network bandwidth. This function allows 
the viceroy to query the warden for the appropriate connection on which to actually place 
the request. 
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Administrative Functions 
parseargs Given a partial list of arguments in argv, try to parse 

the next and subsequent arguments. Return the num- 
ber of arguments consumed. Only function that may 
be called before init 

init Set up the warden's internal data structures, if any. 
pstats Print summary statistics to a particular file. 
getcid Given one of this warden's onodes, return the con- 

nection to the server storing that onode. 

General Functions 
lookup Given an onode and a pathname component, return 

the named onode. 
root Obtain the root object of a tome. 
access Given an onode, a credential, and an operation, return 

successfully if the user named by the credential is 
allowed to perform the operation on the onode. 

getattr Return the meta-data (attributes) of an onode). 
open Open an onode. 
close Close an onode. 
rdwr Read a buffer from or write a buffer to an onode. The 

warden is responsible for allocating the buffer which 
read operations are to fill, allowing it to satisfy reads 
from prefetched buffers. 

rdwrdisp Dispose a buffer previously returned by rdwr 
readdir Read a portion of a directory's contents. 
readdirdisp Dispose a buffer previously returned by readdir. 

Odyssey Extensions 
tsop Warden's function to handle type-specific operations. 

Responsible for allocating result buffer, if any. 
tsopdisp Warden's function to dispose result buffers returned 

by tsop. 

Figure 3.7: Warden Table Summary 
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The general operations are those required of any VFS client. In order to support 
legacy applications, which expect the system to treat all file system objects as untyped 
byte streams, wardens are expected to provide at least open, close, and rdwr. Wardens 
must also support access control via the access operation, and provide meta-data through 
thegetattr operation. 

Wardens also provide name resolution via the lookup operation. When the viceroy 
receives a name resolution request, it is given a directory of id from which to start reso- 
lution, and a pathname. That of id and pathname are passed to the appropriate warden, 
which is expected to resolve the pathname as far as possible. If the warden encounters a 
mount point during resolution of the pathname, it passes control back to the viceroy, which 
then dispatches the remainder of the resolution to the warden of the mounted tome's type. 
Name resolution may be specialized to provide something other than the hierarchical UNIX 
file system. For example, a Web warden might provide naming based on URL's embedded 
in pathnames. 

3.3.7   Type-Specific Operations: Changing Fidelity 

There may be many different types supported by Odyssey, and each type may support many 
different fidelity-changing operations. Enumerating each such operation may well prove 
impossible; types and their supported fidelities will certainly evolve over time. Odyssey 
therefore provides a single, general-purpose mechanism, called type-specific operation, or 
tsop. It is used to provide both fidelity-changing operations as well as other useful type- 
specific extensions to the interface. 

There are two forms of tsop, both following the same general form, taking seven 
arguments. The first argument is the object upon which the operation is to be performed. 
The second specifies the version of the Odyssey interface being used by the caller. This is 
used to detect version skew between applications and wardens, much as with the request 
operation described in Section 3.3.3. 

The third argument specifies the operation to perform on the named object; the opera- 
tion is named by an integer that is unique within a type, but may be reused across types. 
The fourth and fifth arguments together specify the arguments, if any, to be used in carrying 
out the named operation; the arguments themselves are passed in the unstructured buffer 
arg, and the size of that buffer is passed in argsz. The results from the operation are 
passed back in the sixth and seventh arguments. The results themselves are passed back 
in a buffer, ret, that is supplied by the caller. The original size of that buffer is passed in 
ret sz, and the actual size of the result is placed there on return. 

The two forms differ in how they name the object upon which the operation is to be 
performed. The first, ody_tsop, passes a file descriptor referring to some previously 
opened Odyssey object. The second, ody_f t sop passes a pathname to identify the object. 
As discussed in Section 3.3.3, both forms are necessary. 
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int ody_tsop (IN char *path, 
IN struct ody_vers * 
IN unsigned int op, 
IN size_t argsz, 
IN void *arg, 
IN/OUT size_t *retsz, 
OUT void *ret); 

int ody_tsop (IN int fd, 
IN struct ody_vers *■ 
IN unsigned int op, 
IN size_t argsz, 
IN void *arg, 
IN/OUT size_t *retsz, 
OUT void *ret); 

vers, 

vers, 

This figure specifies the API used by Odyssey applications to perform type-specific op- 
erations. There are two forms, ody_tsop and ody_f tsop. the former uses pathnames 
to specify the object upon which the operation is to be performed; the latter uses file 
descriptors. These functions are similar to the UNIX ioctl system call. 

Figure 3.8: Type-Specific Operations 

3.4    Summary 

Odyssey is designed as a small set of extensions to the NetBSD operating system. These 
extensions provide facilities for application-aware adaptation on a mobile client. They 
were designed to be compatible with the UNIX idiom, and provide an efficient split of 
mechanism and policy, while respecting the end-to-end argument. 

The design borrows heavily from two previous systems, Coda and AFS. Odyssey main- 
tains a strict split between trusted servers and untrusted clients. It provides application- 
aware adaptation in the context of the file system, while maintaining ease of administration 
and development. 

Odyssey introduces the idea of resources as the environment in which adaptive appli- 
cations operate. The system monitors the availability of those resources, and applications 
use resource requests to tell the system which resource changes are of interest. An Odyssey 
client is divided into the viceroy, which manages resources on the client and is responsible 
for type-independent functionality, and a set of wardens that provide type-dependent op- 
erations, one warden per type. The viceroy and wardens together are implemented in user 
space. 

The viceroy remembers resource requests, and compares them to the changing avail- 
ability of resources. If a resource strays outside of a requested window of tolerance, the 
viceroy notifies the requesting application with an upcall. Upcalls are asynchronous, carry 
arguments and return results, and are delivered exactly-once and in order. 
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Application operations on Odyssey objects are forwarded to the viceroy by an in-kernel 
interceptor, and are then dispatched to the appropriate warden. Wardens provide both stan- 
dard file system operations as well as type-specific operations when possible. Wardens 
provide fidelity-changing operations, and also extend the standard UNIX name resolution 
operation in type-specific ways. 

Wardens are responsible for interactions between the client and servers, but use a com- 
mon communications substrate to do so. All Odyssey traffic is expected to use this common 
substrate, providing a single point of control for the network. This single point of control 
allows Odyssey to manage the network intelligently in the face of concurrent applications. 
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Chapter 4 

Implementation 

This chapter presents the implementation of the Odyssey prototype. It begins by asking the 
questions that the implementation was to answer; these goals dictated the areas in which 
implementation effort was focused. The chapter then summarizes the two NetBSD features 
required for the discussion of the implementation — signal delivery and the virtual file 
system, or VFS. 

The bulk of the chapter presents the Odyssey prototype itself. It begins with a de- 
scription of the two mechanisms on which the remainder of the prototype is built: upcalls, 
which provide support for resource requests and notifications, and the interceptor, which 
glues the Odyssey name space into the client's file system. The interceptor forwards Odys- 
sey requests to the viceroy, which dispatches them to the appropriate warden. The chapter 
describes the details of the viceroy's implementation, and the general structure of the war- 
dens. 

Finally, the chapter presents the API extensions provided to Odyssey applications. Re- 
source requests, and the accompanying notifications, are implemented in terms of both 
upcalls and VFS extensions. Type-specific operations make use only of the latter. 

4.1    Implementation Goals 

The Odyssey prototype was built to answer a specific set of questions: 

• Can the Odyssey API and architecture effectively support application-aware adapta- 
tion? 

• Can the viceroy estimate resources with enough accuracy to enable applications to 
make good adaptive decisions? Can this be done even for resources that are not 
directly under the client's control, such as network bandwidth? 

• How critical is a single point of resource control required to support concurrent ap- 
plications? 

The first, and most important, implementation goal was to confirm that the design could 
support application-aware adaptation. This focused implementation effort on the API ex- 
tensions and the architecture supporting the viceroy and wardens. 

39 
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The second goal was to understand the impact of estimating the availability of resources 
entirely at the client. This estimation is relatively simple for resources under direct client 
control, such as disk space. Tools for measuring resources of more recent interest, such 
as battery power, are being integrated with current hardware [32]. However, for resources 
not entirely the province of the client, such as network bandwidth, the case for purely local 
estimation is less clear. This observation, combined with the obvious need to adapt to 
changes in the bandwidth available to a mobile host, led to the focus on bandwidth as the 
first resource to which to adapt. 

Finally, one can argue from first principles why applications must have some say in the 
adaptation process. However, the need for the system's involvement — specifically as the 
single point of resource control — is less clear. The prototype therefore ensures that all 
network traffic is visible to the viceroy, and the viceroy's support for communications is 
one of the main thrusts of its implementation. 

The prototype also was influenced by what were explicitly not the goals of its construc- 
tion. For example, while performance of the prototype is a concern, some performance 
was sacrificed in building a user-level viceroy and set of wardens to ease implementation 
and debugging. Furthermore, the prototype focuses on support for adaptive applications 
exclusively rather than include legacy applications, making a complete implementation of 
the VFS interface less important. 

4.2   Implementation Background 

There are two mechanisms in the NetBSD kernel upon which the prototype relies: signal 
delivery and the virtual file system, or VFS. This section provides a brief summary of these 
two, intended to give enough context the remainder of the chapter. For more details on 
these mechanisms, the interested reader is directed toward McKusick's text [46]. 

4.2.1   Signal Delivery 

The UNIX signal mechanism provides a fashion of software interrupt. Signals can be used 
to notify a process, asynchronously, of some exceptional condition. By default, most sig- 
nals terminate the process to which they are sent, though some pause the process and others 
are simply ignored. A process may choose instead to handle a signal with a particular func- 
tion, or to ignore it entirely. Signal handling is expensive in comparison to local procedure 
calls, and are comparable in cost to most inter-process communication mechanisms. 

At the heart of NetBSD's signal implementation is the sigset _t, which is a single 32- 
bit integer, one bit per signal. This data structure represents signal fists in many different 
instances. For example, the element of the process structure that lists all signals pending 
delivery to a process, p_siglist, is a sigset_t. 

A process posts a signal to another process by setting the appropriate bit in the signalled 
process's p.siglist. Delivery of this signal can happen only at discrete times. Signals 
may be delivered when a process is in or enters an interruptible sleep. They also may be 
delivered upon returning from a trap or system call. 
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Since posted signals are represented by a bit, and signals are not delivered the instant 
they are posted, signals are delivered with at-most-once semantics. If the same signal is 
posted to a process twice before the first instance is delivered, the process will only see a 
single delivery of that signal. 

Signal delivery itself is a very complicated, three-step process. In the first step, the 
kernel builds a signal context, and adds arguments for the signal handler to the signalled 
process's stack frame. As part of this modification of the stack frame, the kernel sets the 
current instruction pointer of the signalled process to point to the signal trampoline code, 
which is placed at the top of each process's stack at process creation time. The trampoline, 
which is the second step of signal delivery mechanism, will then run when next the process 
is pulled from the run queue. The trampoline then calls the actual signal handler as the 
third step. 

4.2.2   VFS: Virtual File System 

The BSD 4.4 file system, along with the file system of several other kernels, uses the 
Virtual File System, commonly known as VFS [40], to glue together several distinct file 
systems under a unified layer. The VFS layer presents a unified front to the file I/O system 
calls, as well as a framework within which each of the individual file system types can be 
implemented, as shown in Figure 4.1. 

file system calls 

kernel 

virtual file system 

FFS AFS NFS 

Figure 4.1: VFS: the Virtual File System 

The central abstraction in VFS is the vnode, which represents a single object in one 
of the file systems under VFS. Each vnode has a type-independent layer common to all 
vnodes, and a type-specific layer which is managed entirely by the underlying file system. 
Included in the type-independent state of the vnode is the file system type to which it 
belongs, and whether the vnode is a directory or regular file; the former may be used as 
contexts for name resolution, but the latter may not. 

The file I/O system calls call down to the VFS layer, which then redirects these calls 
through a function table called the vnode operations table. Each vnode has a pointer to 
the operations table for its file system type; different file systems implement the same 
operations differently. There is one entry per file system operation in the vnode table, and 
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the operations are commonly implemented by all underlying file systems. This structure is 
illustrated in Figure 4.2. 
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Figure 4.2: Structure of Vnodes 

The original VFS implementation required each underlying file system type to imple- 
ment each of the vnode operations. BSD 4.4 included an extension to VFS called stackable 
layers [27]. This extension allowed each file system to implement a different subset of all 
vnode operations; a file system's particular subset was determined at boot time from a de- 
scriptor provided by the file system. This allows individual file systems to add functionality 
to VFS without requiring changes to all other file systems in the kernel. 

4.3    Component Overview 

There are four main bodies of code that together provide support for application-aware 
adaptation: upcalls, the in-kernel interceptor, the viceroy, and wardens. They were intro- 
duced in Section 3.2, and are depicted in Figure 3.1. 

The upcall mechanism is one of the basic building blocks with which Odyssey is con- 
structed; upcalls are chiefly used for resource notifications. The bulk of this mechanism is 
within the kernel; it consists of approximately two thousand lines of code. Most of this in- 
kernel code is new, though small changes were made to the signal handling mechanism and 
the routines that handle fork, exec, and exit. There is also a small user-level library 
that applications using upcalls must include; it is approximately 500 lines of code. 

The in-kernel interceptor forwards Odyssey requests to the viceroy, and also imple- 
ments the extensions to the system call interface.   It was ported from the Coda Mini- 
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Cache [76], which was twelve thousand lines of code. In this port, approximately four 
thousand lines were removed; other than changing the names of routines and structures, 
approximately one thousand lines of code were added or changed. There is also a very 
small user-level library supporting the API extensions; it is approximately 1.5 thousand 
lines of code. 

The viceroy forms the bulk of the implementation effort. It makes use of pre-existing 
code to implement the user-level threading and communications packages, consisting of 36 
thousand lines of code. The viceroy adds to this less than twelve thousand lines of code 
for object management, communications infrastructure, operation forwarding, and resource 
management. 

The individual wardens — the type-dependent code components — are described in 
Chapter 5; this chapter focuses only on their common structure. However, a simple warden 
providing access to data streams is less than 1.5 thousand lines in size. This warden is used 
in support of a synthetic application used in experiments, described in Section 7.2.2, and 
represents a minimal warden. 

4.4   Basic Components 

There are two basic components on which the remainder of the Odyssey prototype is built: 
upcalls, which provide exactly-once, asynchronous notifications with arguments and return 
values; and the in-kernel interceptor, which forwards vnode operations on Odyssey objects 
to the viceroy. This section describes the implementation of each of these two, and lays the 
foundation for the description of the prototype itself. 

4.4.1    Upcalls 

Upcalls, introduced in Section 3.3.5, are the foundation upon which resource requests are 
built. While they are more powerful than signals they are implemented using the signal 
facility. This implementation strategy makes use of the signal delivery process for invoca- 
tion, but adds facilities for exactly-once, in-order delivery and the passing and returning of 
arguments. A clean separation between signals and upcalls is maintained; the former need 
know nothing about the latter. 

A new signal, SIGUPCALL has been added to the set of signals that NetBSD supports, 
and ties together the upcall implementation. By default, this signal is ignored by appli- 
cations. Using a new signal that is ignored by default minimizes the impact on programs 
which are not aware of upcalls. 

The upcall implementation comprises four areas of functionality that support the design 
of Section 3.3.5. Upclasses divide the domain of upcalls into related groups and expose the 
details of upcall handüng to individual subsystems. A process may declare upcall handlers 
through upcall registration. An upcall may be posted to a process that has declared a 
handler for that upcall. Finally, processes handle posted upcalls in the previously declared 
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handler. This section gives a brief overview of these areas, and then describes each of them 
in turn. 

An upclass is a collection of related upcalls, and a kernel subsystem which provides 
support for them. Each upclass is described through a function table, which describes the 
bookkeeping functions required of an upclass. The upcall infrastructure provides a set of 
default implementations for each of these functions; upclasses with no special needs can 
use them directly. 

Upcall registrations are handled by a combination of kernel support and a user-level 
library. At initialization time, this library registers a signal handler for SIGUPCALL. When 
the process linked to the library requests an upcall registration, the library records mappings 
between the registered upcall and declared handler. The registration information is then 
forwarded to the kernel, which makes it available to individual upclasses for bookkeeping 
purposes. The upcall registration process is depicted in Figure 4.3(a). Regardless of the 
upclass's own bookkeeping, the upcall infrastructure, through fork and exec, maintains 
a list of upcalls registered for a process. This list is kept in the process structure. 
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(a) Registration (b) Invocation 

Figure 4.3: Upcall Registration and Invocation 

Upcalls may be posted by user-level processes via a system call, or through a set of 
routines internal to the kernel; both mechanisms use the same underlying code. Because 
signal-handling overhead can be significant, upcalls are posted only to processes willing to 
accept them. These posted upcalls are enqueued to each destination process; this queue, 
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like the list of handled upcalls, is part of the process structure. The kernel then notifies 
these processes that an upcall is pending by posting a SIGUPCALL to them. 

The SIGUPCALL handler in the user-level library catches the signal and enters a loop to 
handle all pending upcalls. For each such upcall, the library reads the upcall and arguments 
from the in-kernel queue, and forwards the request to the appropriate upcall handler. The 
library then passes the return code and result buffer, if any, back to the kernel, which returns 
the results to the caller. The invocation process is illustrated in Figure 4.3(b). 

The remainder of this section describes the upcall implementation in detail. For ref- 
erence, Figure 4.4 summarizes the upcall API, and, for each function, specifies whether 
the library or kernel implements it. This API is supported both by service routines in the 
library, and system calls intended to be used only by the library. These are summarized in 
Figures 4.5 and 4.6, respectively. 

upcall_reg Register an upcall handler. Library routine. 
upcall_block Block reception of upcalls. Library routine. 
upcal l_unblock Unblock reception of upcalls. Library routine. 
upcall_sync Synchronously invoke an upcall. System call. 
upcall_async Asynchronously invoke an upcall. System call. 

Figure 4.4: Upcall API Summary 

uclib.init Check for presence of upcall support in the kernel. 
Set up hash table that maps upcalls to handlers. Es- 
tablish signal handler for SIGUPCALL 

catch_sigupcall    Main routine for upcall handling. When notified by 
SIGUPCALL of pending upcalls, obtains them from 
the kernel, hands them to appropriate upcall handler, 
and returns results. 

Figure 4.5: Upcall Library: Internal Routines 

Upclasses 

To preserve isolation between different kernel subsystems, and to allow individual sub- 
systems access to the details of upcall handüng, groups of related upcalls are collected 
into upclasses. Each upclass is represented in the kernel by an upclass descriptor, a table 
of functions that provides the basic bookkeeping actions required to register for and post 
upcalls. The key elements of this descriptor are presented in Figure 4.7. 

At boot time, the kernel steps through each descriptor in the table, and calls the de- 
scriptor's init function. This function is responsible for setting up any upclass-specific 
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_upcall_reg 

_upcall_next 

_upcall_args 

_upcall_ret 

Called by upcall_reg in the library. Passes regis- 
tration information from the library to the kernel 
Called by handle.sigupcall. Obtains the next 
upcall to be invoked, and the arguments if possible. 
Called by handle.sigupcall. Obtains argu- 
ments in cases where _upcall_next was unable to. 
Called by handle.sigupcall. Tells kernel that 
library has finished this call. Passes return informa- 
tion back to the caller if necessary. 

Figure 4.6: Private Upcall System Calls 

init Function to set up upclass's internal state. Called 
only at boot time. Result determines inited. 

ini t ed   True if initialized. Set only at boot time. 
not i f y Function to call when a process (de-) registers an up- 

call handler. 
r cpt Function to call to check if some process can receive 

a particular upcall. 

Figure 4.7: Key Elements of an Upclass Descriptor 

data structures; if it returns successfully, the kernel marks the descriptor as inited. If 
the function returns failure, or the descriptor is not filled in,1 the descriptor is not marked 
inited. The remaining functions are described in the remainder of this section in the 
context of their use by other parts of the upcall implementation. 

Upcall Registration 

A request to register an upcall handler is handled first by the run-time library. If this is 
the first request by the application, the library calls uc 1 ib_ini t. This routine installs the 
SIGUPCALL handler, and initializes the hash table mapping upcalls to handlers. 

From then on, when registrations are requested, the library records the address of the 
handler in the hash table, which is keyed by upcall number, and then forwards the regis- 
tration to the kernel via _upcall_reg. This system call need carry only the upclass and 
upcall numbers, along with a flag specifying whether this is a registration or deregistration; 
the kernel does not record the address of upcall handlers. 

Changes in upcall registrations are handled by the kernel routine uc_doreg; it is told 
the process for which the request is being made, the upclass and upcall numbers, and a flag 

^uch situations typically arise when the subsystem implementing the upclass is not configured into the 
kernel. 
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specifying whether this is a registration or a deregistration. The upclass is notified of the 
request via its no t i f y method, and is free to allow or disallow the registration change. 

If the upclass allows the change in registration, it returns a process entry to be inserted 
into or removed from the process's list of registered-for upcalls. This list is stored in the 
process structure. It is used to provide upcall inheritance through fork, which walks 
the parent process's list of registered upcalls, registering an identical set for the child. A 
process's registrations are all removed on either exec or exit. 

Upcall Posting 

Upcalls may be posted either by user-level processes or the kernel. Synchronous upcalls 
may be posted only by processes, and not the kernel. This is because the poster of a 
synchronous upcall is put to sleep while the upcall is being processed. At invocation time, 
the kernel might be executing in a device driver or exception handler, with no corresponding 
process to suspend. Regardless of how they are invoked, they are handled similarly. 

The posting routine first obtains the list of processes to which this upcall is to be posted 
by calling the upclass's rcpt routine; this list is called the to-notify fist. When posting an 
asynchronous upcall, rcpt may return a list with many processes. In contrast, synchronous 
upcalls will obtain at most one process from r cp t; synchronous upcalls specify a particular 
pid, and there can be only one registered handler per upcall for a given process. 

The upcall is then posted for each process in the to-notify list. This task is handled by 
uc_post, which places the upcall onto the tail of the process's pending upcall list, and 
then posts the SIGUPCALL signal to that process. Each element on this queue carries with 
it the arguments to be passed to the upcall handler, and, for synchronous upcalls, a buffer 
to receive the return values. The storage for arguments to upcalls that are posted to more 
than one process is shared amongst all instances of the posted upcall. The upcall subsystem 
manages this storage by reference count, and deallocates it when it is no longer needed. 

Upcall Handling 

When a SIGUPCALL is posted to a process accepting upcalls, the handler 
catctusigupcall catches it.  This handler loops, processing all outstanding upcalls 
pending for that process. This loop makes use of the last three system calls in Figure 4.6; 
these system calls are intended to be used only by the catch_sigupcall routine. 

The first of these private system calls is _upcall_next. This system call returns the 
upclass and upcall numbers of the next upcall, as well as the sizes of the argument and result 
buffers. As an optimization, the library names an argument buffer which _upcall_next 
fills if the pending arguments are not too big to fit. If they are too big, the library routine 
allocates a buffer big enough to hold the pending arguments and then calls _upcal l_args 
to obtain them. The library allocates a buffer large enough to hold any returned results. 

Once the arguments are obtained, the library looks in the hash table for the function 
handling the in-progress upcall. The library calls the upcall handler with the argument and 
result buffers. The return value from the upcall handler, along with the result buffer, are 
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passed back to the kernel via the third private system call, _upcall_ret. This last system 
call checks to see if this is the last invocation of this upcall, and deallocates the argument 
buffer if it was. It also checks to see if the upcall was invoked synchronously. If so, it wakes 
up the waiting caller so that it can retrieve the results. 

The library also exports routines for blocking and unblocking the reception of upcalls. 
These routines are used internally during upcall registration. They may also be used by 
an application to provide critical regions during which no upcalls will be handled. These 
routines ensure that, ifupcall_blockis called more than once, an equal number of calls 
to upcal l_unblock are required to resume upcall reception. 

4.4.2   Interceptor 

The interceptor acts as Odyssey's VFS component, gluing the Odyssey name space into the 
client's file system. The interceptor receives operations from VFS and forwards them to 
the viceroy. The interceptor can also satisfy simple requests on Odyssey objects without 
contacting the viceroy. The interceptor is based on Coda's MiniCache, which played the 
same role in Coda. 

The communications channel between the interceptor and the viceroy is a two-way pipe 
implemented as a pseudo-device. As requests come in to the interceptor to be forwarded 
to the viceroy, they are written to the pseudo-device. The viceroy reads these requests, 
performs the operations, and writes the results back to the pseudo-device. The intercep- 
tor matches responses from the viceroy with their requests, and passes the results to the 
appropriate caller. 

Upon initialization, the viceroy opens this pseudo-device; the device driver interprets 
this as a mount request, and mounts the interceptor as a VFS file system mounted at the 
root of the client's file system. From then on, any file system operations in the Odyssey por- 
tion of the name space are redirected by VFS to the interceptor. These redirected requests 
name the operation requested, the vnode upon which the operation should be performed, 
and the arguments to the operation, if any. 

The per-vnode data maintained by Odyssey is called an onode, An onode contains the 
object's of id, a structure introduced in Section 3.3.4. There are four operations that can 
be satisfied entirely by the interceptor: lookup, getattr, readlink, and rdwr. To 
do so, the interceptor keeps a small, fixed-size cache of onodes. Onodes can be retrieved 
from the cache directly by of id, or by their parent onode and the pathname component 
that names the child from the parent. When a lookup request arrives at the interceptor, it 
checks, for each pathname component, if the onode is already in the cache. If the eventual 
target onode is found, the cache can satisfy the request. If it is not found, the interceptor 
forwards the request to the viceroy, and enters the newly-discovered onode into the cache. 
Since UNIX processes show a high degree of pathname locality, the cache can eliminate 
most of the name translation overhead [76]. 

Once an onode is in the cache, attribute and symbolic link information also can be filled 
in. On receiving either a getattr or readlink operation, the interceptor first checks 
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the cached onode for the information. If it is present, it is returned; if not, the operation is 
forwarded to the viceroy, and the results are cached for later use.2 

Reads and writes can also be handled entirely by the interceptor for certain classes of 
ondoes; they are marked as cacheable, and are stored by the viceroy in a container file 
on the client's local disk. When such onodes are opened, the viceroy returns the on-disk 
device and inode numbers identifying the local container file holding that onode's contents. 
Later rdwr requests for that onode can be redirected to the local file system code, which 
performs the request directly on the container file. Wardens decide which onodes can be 
marked cacheable; for example, video streams are too large to be cached in their entirety, 
and thus rdwr requests must be forwarded to the viceroy. 

The interceptor provides four vnode operations that are implemented only in the Od- 
yssey portion of the file system. Three of these operations support the implementation of 
resource requests, the fourth supports type-specific operations; they are all described in 
Section 4.7. Because the BSD 4.4 implementation of VFS includes the stackable layers 
extension, Odyssey may implement these four in isolation, without requiring changes to 
the other VFS file system types. 

4.5   Viceroy 

The viceroy, introduced in Section 3.3.4, is the central component of the Odyssey proto- 
type. It acts as the single point of resource control, and is responsible for type-independent 
functionality. It is uses a non-preemptive, user-level threads package. There are two tasks 
for with the viceroy is responsible: operation dispatch, and bandwidth estimation. 

When an operation is enqueued to the pseudo-device by the interceptor, a worker thread 
dequeues it for processing. It examines the operand, and then forwards the request to that 
operand's warden, which performs the operation. This process of operation dispatch is 
described in Section 4.5.1 

The focus of the prototype is adaptation with respect to connection bandwidth. The 
connection manager, described in Section 4.5.2 is responsible for providing network ser- 
vices to the wardens. The viceroy has a background thread, the estimator, that periodically 
estimates the bandwidth available to each of the connections in the connection manager. 

4.5.1    Operation Dispatch 

During initialization, the viceroy spawns a pool of worker threads, opens the pseudo-device, 
and calls mount to set up communications between the interceptor and the viceroy. After 
initialization, the main thread of the viceroy enters the kernel loop. 

2Presently, the viceroy does not implement symbolic links, but the functionality to handle them in the 
interceptor exists. 
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In this loop, the main thread repeatedly calls select3 on the pseudo-device. As re- 
quests come in to the interceptor, they are enqueued to the pseudo-device. The interceptor 
then marks the pseudo-device available for reading, which causes the main thread to return 
from its select. This thread pulls the request from the pseudo-device, and places it on 
the work queue. 

The worker pool threads dequeue requests from the work queue as they arrive. When a 
worker thread receives a request, it examines the opcode of the request, and then decodes 
the arguments to the operation based on the opcode. The operands for the operation — 
the onodes — are reference-counted and locked, and then the operation is passed to the 
appropriate function in the warden's function table. Most of these functions form a subset 
of the vnode operations, and are described in Section 4.6. The remainder support Odyssey's 
API extensions, and are described in Section 4.7. 

4.5.2   Communication Substrate 

While the wardens are responsible for the contents of the communications between client 
and server, the mechanism over which this communication travels is the domain of the 
viceroy, and is provided by the the connection manager. The reason for this is twofold. 
First, the common tasks of setting up and maintaining connections are shared throughout 
the client, rather than requiring that each warden reimplement them. Second, and most 
importantly, this common substrate provides the mechanism by which the viceroy can serve 
as the point of network control. This section first outlines the services provided by the 
connection manager to wardens, and then describes the process of bandwidth estimation in 
detail. 

Connection Management 

As described in Section 3.3.4, the connection manager's key abstraction is the connection. 
Connections are named by their endpoints: (host, service, number). Each con- 
nection may have only one outstanding request at a time; for parallelism, there may be 
more than one connection between a client and a particular service. Connections use RPC2 
as their underlying transport mechanism. It provides both traditional remote procedure call 
as well as a sliding-window, selective-acknowledgement protocol for bulk transfer called 
SFTP. A summary of the connection manager's operations appear in Figure 4.8 

Wardens can create and destroy connections. They must get an existing creation 
in order to use it, and put the connection when they are through with it. The connection 
manager uses reference counting to prevent the destruction of connections that are in use. 

Once created, connections are long-lived. That is, the underlying RPC2 link between 
client and server may break and a new one later be established, but the connection persists 
across these changes, and appears to be a single connection to the wardens that use it. 

3For concurrency concerns in the presence of our user-level threads package, this select is actually a veneer 
on a routine in the threads package which only calls the select system call in the event that no threads are 
able to run. 
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create Create a new connection. 
destroy Destroy a connection. 
get Increment a connection's reference count. 
put Decrement a connection's reference count. 
isvalid Check to see if a connection is currently usable. Will 

not block. 
validate Attempt to ensure that a connection is currently us- 

able. May block if connection must be reestablished. 
markdown Mark a connection as unusable. 
register Register a function to be called when a connection 

changes state.  For example, a connection that was 
marked down was validated. 

unregister Remove a previously registered function. 

Figure 4.8: Connection Manager Functions Exported to Wardens 

Because connections are long-lived, they may be be unusable at times — situations 
where the underlying RPC2 link is broken. Thus, there is state associated with connections; 
a connection may be either alive or dead. There are two operations for wardens to examine 
or change this state. The first is isvalid, which returns immediately with the current 
state of the connection, but makes no attempt to resurrect dead connections. The second, 
validate, will try to resurrect a connection if it is dead, but will block while doing so; it 
should not be used in time-critical sections of a warden. 

In the course of using a connection, a warden may discover it is dead. It uses the 
markdown function to make this known. If a warden wishes to be made aware of changes 
to a connection's state, it may register a callback function with the connection man- 
ager. For example, a warden may need to re-validate any items cached from a previously 
inaccessible server when the connection to that server is reestablished. Whenever a con- 
nection changes state from alive to dead or vice versa, all registered functions will be called 
in the order in which they were registered. Wardens may also unregister previously 
registered functions. 

Bandwidth Estimation 

As wardens make use of connections to communicate with servers, RPC2 logs the sizes and 
elapsed times of both short exchanges and bulk transfers. The short, small remote procedure 
calls give an approximation of round trip times, while the long, large bulk transfers give an 
approximation of throughput. The viceroy periodically examines the recent transmission 
logs, and determines the instantaneous bandwidth available to the entire machine. It then 
estimates how much of that bandwidth is likely to be available to each connection in the 
coming period. 
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It is important to note that this is estimation, and not reservation or admission con- 
trol. The viceroy makes no attempt to guarantee that its estimates will be met by the sys- 
tem. Rather, it assumes that over the short term, network usage and quality are unlikely to 
change; the definition of "short term" is the period of estimation. If, for concerns of agility, 
this period is too long, it can be shortened to take account of more fine-grained variations. 
The period used in the current prototype is 500 milliseconds. 

Estimation is also purely passive; it depends only on observing traffic already present 
on the client. This is in contrast to approaches such as Keshav's packet-pair protocol [38], 
which add traffic to the network for the purposes of estimation. There are pros and cons to 
each approach. Passive estimation does not add traffic to what may be an already overtaxed 
network, but depends on the regular generation of traffic in the normal course of events; if 
the client infrequently generates traffic, the granularity of measurement will be correspond- 
ingly coarse. In contrast, active measurement does not rely on the presence of other traffic, 
but can reduce the overall utilization of the network. 

RPC2 logs As wardens perform remote procedure calls and bulk transfers, RPC2 ob- 
serves the requests and responses to adjust its own retransmission timers. Requests are 
timestamped and responses echo timestamps, allowing RPC2 to estimate both round trip 
time, or RTT, as well as throughput; the RTT values influence the shortest retransmission 
interval. In addition to using this information internally, RPC2 logs its RTT and throughput 
information, and makes the contents of these logs available to higher levels of the system; 
in Odyssey's case, the viceroy. This section presents a brief overview of these logs. The 
details of how RPC2 calculates RTT and correspondingly adjusts retransmission timers has 
been described by Mummert [49]. 

On a client, each unique (host, service) pair maintains two separate logs: one 
for remote procedure call traffic, and one for bulk transfer. Multiple connections to the 
same (host, service) pair share logs. Each log contains observations in a fixed-size 
circular buffer. Each observation is of the form: 

At time t, hosts C and S exchanged D bytes in e seconds. 

where C is the client, S is the server, D is the size of the exchange, and t is the time 
to send the data and receive the acknowledgement that it arrived. These observations are 
made by timestamping request packets sent either by a host, and echoing those timestamps 
in response packets. Hosts only use internally generated or echoed timestamps; clocks on 
distinct hosts need not be synchronized. 

Log entries mean different things for each of the two protocols. For remote procedure 
calls, shown in Figure 4.9, the logs represent the time for a single, short exchange, minus 
any server-side delays. The client sends a request to the server of size dq at time tcu 

and the request packet is stamped with that time. The server, on receipt of that request, 
saves the timestamp and processes the request. The time taken for this processing, s, is 
measured by the server. The server sends the response, which is of size dr, and echoes the 
timestamp tc\ + s. The client receives this response at time tc2, and logs the observation 
that D = dq + dr bytes were exchanged in time tc2 — (tci + s). 



4.5.  VICEROY 53 

Client 

Request 
time = tc," Jc, 

Server 

Process 
Request 

Serviced 
(time = s) ▼ Receive 

time = tc. 
Log 
tc2 - (tc, + s) 

This figure illustrates the contents of RPC2's round-trip time logs. The client is on the left, 
the server on the right; time progresses form the top of the figure to the bottom. Packets 
are exchanged on arrows; timestamps are shown, and where timestamps are echoed, they 
are shown in parentheses. At time tci, the client sends a request to the server. The server 
takes s time to respond to that server, and send the response at time tsi, echoing the 
timestamp tc\ + s. 

Figure 4.9: Remote Procedure Call Logs 

Note that the time recorded in the observation excludes the processing time at the server, 
s. Ignoring this time provides isolation from computational load at the server; the recorded 
duration is only the time required to exchange packets. Since it is a measure of elapsed 
time, the term s may be used on the client in the absence of synchronized clocks. 

Note also that the number of bytes in the observation is the sum of the request and 
response packets, not including headers. This total is expected to be small, and is limited 
to twice the maximum RPC2 packet size; in our implementation, this is 4500 bytes. 

The client's bulk-transfer logs record the time it takes to send a window's worth of data 
from sink to source, plus either an acknowledgement of or request for data. Exactly which 
of these is recorded depends on whether the client is acting as the source or the sink. These 
two situations are shown in Figure 4.10. 

Figure 4.10(a) depicts the client as the source of the bulk transfer. In the top of the 
figure the client is ready to send a new window's worth of data, D. Suppose it takes three 
packets to transfer all D bytes. The first portion ofthat window, dx bytes, is sent at time tcx; 
the packet is stamped with that time, and marked. When the server receives this marked 
packet, it remembers the timestamp the packet carries for later echo. Meanwhile, the client 
sends the remaining packets in the window, d2 bytes at tc2, and d3 bytes at tc3. On receipt 
of the last packet in the window, the server sends an acknowledgement for the window, and 
echoes the remembered timestamp tc\. This acknowledgement is received by the client at 
time tc4, which logs the observation that D = dx -f d2 + d3 bytes of data were sent and 
acknowledged received in time tc4 — tcx. 

When the client is the data sink, the situation is only slightly different. Upon receiving 
the last packet in a window, the client sends an acknowledgement of that window at tci. 
When the server receives this acknowledgement, it remembers the timestamp, and begins 
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Client 

Data 
time = tc 

Ack 
V time = to, 

Log 
to, - tc, 

Server 

Echo = tc, 

Client 

Ack 
time = tc 

Window 
T time = tc. 

Log 
tc2 - tc, 

Server 
Data 
time = ts. 

Echo = tc, 

(a) Client as Source (b) Client as Sink 

Each of these figures illustrate the contents of RPC2's throughput logs. In each the client 
is on the left, the server on the right; time progresses form the top of the figure to the 
bottom. Packets are exchanged on arrows; timestamps are shown, and where timestamps 
are echoed, they are shown in parentheses. 

Figure 4.10: Bulk Transfer Logs 

the next window. When the server sends the last packet in the window, it echoes the re- 
membered timestamp tc\. Upon receipt of this last packet at time tc2, the client logs the 
observation that D bytes were requested and received in time tc2 — tc\. 

In the client logs, there is no way to differentiate between sink and source transfers. 
However, assuming the presence of a symmetric network, no such distinction need be made. 
Each case, sink or source, measures the transfer of a full window's worth of data, and one 
half of a round trip time; the order of these events is immaterial. 

The two kinds of observation logs — remote procedure call and bulk transfer — es- 
timate round trip time and throughput respectively. From these, one can determine band- 
width in the following way, provided one is willing to assume symmetric network perfor- 
mance. Consider the case with only a single remote procedure call entry, and a single bulk 
transfer window from client to server. The latter measures the time to transfer data in one 
direction, plus the time to send an acknowledgement. Subtracting the time for the acknowl- 
edgement — one half of a round trip time — yields the time to transfer the data only; the 
size of the transfer divided by the time to make that transfer gives the bandwidth. So, given 
a round trip time, R, and a throughput observation, D bytes in / seconds, the bandwidth 
was: 

D 
t - R/2 

(4.1) 

The remainder of this section describes how this simple idea is used in estimating the 
bandwidth available both to the client as a whole as well as individual connections on the 
client. 
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The viceroy periodically collects logs for all active connections on the client.4 The first 
step is to estimate the round trip time to each connection's server; these will be used to 
convert each connection's throughput observations to bandwidth estimations. The second 
step is to build a master log that captures the immediate past history of the client as a 
whole, correctly accounting for parallelism amongst connections. The third step uses the 
observations from this master log to estimate the total bandwidth available to the client. 
Finally, the fourth step estimates the portion of this total bandwidth that will be available 
to each individual connection. 

Each remote procedure call is small, and, unlike bulk transfers, they are assumed to not 
interfere with one another while in transit. They are also assumed to be small enough to be 
significantly delayed by only latency considerations, not bandwidth.5 Since service time is 
excluded from the observations in the remote procedure call logs, each observation in those 
logs represents the instantaneous round trip time for that connection. 

Rather than take the most recent remote procedure call observation for each connection 
as its round trip time, the viceroy applies two forms of smoothing. In the first filter, the 
log is scanned oldest to youngest, accumulating an estimate of the round trip time with the 
following recurrence relation: 

fOi if i = l, 
Ri= < (4.2) 

[aOi + il-^Ri-!    ifi>l. K     J 

where Ri is the round trip time calculated at stage i, and Oi is the ith most recent obser- 
vation in the log. The value of a is 0.75, which results in a fairly aggressive smoothing 
function. This value was chosen to give as agile an estimator as possible. 

Our user-level package can occasionally produce anomalously high RPC times. In order 
to discount this in the presence of the aggressive estimator of Equation 4.2, the viceroy 
caps the maximum rise in the RTT to at most 1/2 the previous RTT value; this provides the 
second filter. Thus, Equation 4.2 can be rewritten as: 

fd ifi = l, 

Ri = I aOi + (1 - a)ßj_i    if i > 1 and (aOi + (1 - a)ß,-_0 < 1.5fl,-_i,        (4.3) 
(_l.5-Rj.-i otherwise. 

The need for this second filter is unfortunate; two alternatives suggest themselves. First, 
the source of these unusually long request-response times could be found and corrected. 
Second, the smoothing function might be made slightly less aggressive, retaining agility 
while providing improved stability. However, the main effect of this filter is to occasionally 
produce overly conservative bandwidth estimates; therefore, the viceroy retains it. 

4Because some connections may be to the same remote (host, service) pair, some of the logs may 
be identical; as described later in this section, these identical logs are filtered as a side effect of the estimation 
algorithm. 

5While not strictly true, this simplifying assumption turns out to yield good results in practice. 
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Because remote procedure calls are small, they are assumed to not interfere with one 
another. Therefore, the two filters described by Equation 4.3 are applied to each connection 
independently. This associates a single round trip time with each connection. 

build_master(all_logs) 
while (!empty(master_log)) 

record = get_youngest_entry(all_logs) 
if (!pending_record) 

pending_record = record 
else 

if (equal(last_record, record)) 
continue 

endif 
if (overlap(pending_record, record)) 

pending_record = merge(pending_record, 
record) 

else 
enter(pending_record, master_log) 
pending_record = record 

endif 
last_record = record 

endif 
endwhile 

This figure shows pseudo-code for building the master log from the bulk transfer logs 
from each individual connection. 

Figure 4.11: Master Log Generation 

The next step is to create a single bulk transfer log that correctly describes the recent 
bulk transfers performed by the client as a whole. Figure 4.11 gives the pseudo-code for 
building this master log. At each step in building the log, the viceroy extracts the most 
recent entry from the set of bulk transfer logs. If this record is identical to the previously 
extracted record, it is discarded; this can arise if two or more connections are to the same 
(host,   service) endpoint, and hence have the same log contents. 

If this record is not identical to the previous one, it is checked against the pending record 
for overlap; the pending record was built in the previous iteration through the algorithm. If 
the current record and the pending record do not overlap, the pending record is placed on 
the tail of the log, and the current record becomes the pending record. 

However, if the current record and pending record overlap, they are merged, and the 
merged record becomes the new pending record. The record resulting from the merge of 
the pending and current records begins when the pending record did, and ends when the 
current record did, has a size that is the sum of the two merged records, and is marked as 
belonging to the later records connection. This merge process is depicted in Figure 4.12. 
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Figure 4.12: Merging Log Records 

Once the master log has been constructed, the viceroy estimates the total bandwidth 
as shown in that log; to do so, it applies a filter similar to that in Equation 4.2. Each log 
record in the master log gives throughput; to convert to bandwidth, we must subtract the 
time for the acknowledgement or request packet in Figures 4.10(a) and 4.10(b), one half of 
the round trip time. Thus, each bandwidth observation, B, is: 

B=T^m (44) 

where D is the number of bytes in the log record, t is the time recorded in the log record, 
and R is the round trip time of the connection marked as owning this record. It is here that 
an overly-optimistic round trip time manifests itself as an overly-pessimistic bandwidth 
estimate; the denominator of Equation 4.4 is too large. Since applications make fidelity 
decisions on this estimate, unwarranted pessimism is preferable to unwarranted optimism. 

The bandwidth observations in the master log are smoothed according to a recurrence 
relation similar to that in Equation 4.2, but with an a value of 0.875. This is an even 
more aggressive smoothing function than Equation 4.2, biasing heavily in favor of recent 
observation to be as aggressive as possible. The resulting bandwidth is considered to be the 
bandwidth available to the entire machine. 

Per-Connection Estimation After producing an estimate of total bandwidth, the viceroy 
must estimate how much of this total bandwidth will be available to each connection. The 
actual bandwidth along each connection is unknown; recent observation of each connec- 
tion's performance is the only clue to actual bandwidth. Further, the sum of the bandwidths 
available to each connection cannot be more than the total estimated bandwidth to the ma- 
chine. 

To divide bandwidth, the viceroy bases its estimate of the bandwidth available to each 
connection on recent use; this is determined by examining each connection's individual 
log, deriving its apparent bandwidth as is done for the master log. Connections along 
constrained paths will have lower per-connection bandwidth than connections with along 
faster paths. 
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However, the viceroy cannot rely on recent use alone. Consider an application that, by 
choice, has not used the network recently. The connection supporting this application may 
well be capable of carrying significant network traffic. However, if recent use were the only 
factor, the application would receive an estimate of zero bandwidth from the viceroy. Thus, 
some fraction of the bandwidth must be allocated fairly among all connections. 

The current implementation uses 80% as the amount to divide proportionally, with the 
remaining 20% divided fairly. When the bandwidth accounted for in the individual logs is 
less than 80% of the total, the excess is divided fairly as well. In no event is more than 80% 
divided based on recent use. 

This rule is a simple heuristic, and seems to work well in practice. The key shortcom- 
ing is the handling of connections that have been idle for some time. There is also some 
question of whether this strategy unduly rewards greedy connections. While these are both 
fair criticisms, heuristics such as the 80/20 rule are the best available approach without 
allowing some form of active probing of the network. 

One could imagine allocating excess bandwidth according to need rather than past per- 
formance. For example, the upper bounds of any tolerance windows could be used to decide 
which connections could benefit from such an excess. However, such strategies reduce to 
the question, "How should one arbitrate between competing applications?" In the context 
of mobile computing, where devices are carried by individual users, this arbitration must 
involve the end user. Such a scheme is beyond the scope of this work; it is posed as an area 
of future research in Section 9.2.4. 

4.6   Wardens 

The wardens provide type-specific functionality for an Odyssey client, one warden per 
type. Because the types are very different from one another, the details of each wardens 
implementation will also differ. Despite this, all wardens share a common structure that is 
described in this section. 

The central element of each warden is its warden table; this table is exported by each 
warden to the viceroy, and lists the functions that the warden provides to implement ad- 
ministrative, vnode, and odyssey-specific operations, or methods. Each of these methods is 
gathered together in an array of such tables, wardens. This section describes the admin- 
istrative and vnode operations; discussion of the odyssey-specific operations is deferred to 
Section 4.7, where Odyssey's API extensions are presented in their entirety. 

4.6.1   Administrative Operations 

The four administrative functions, originally presented in Figure 3.7, are reproduced for 
reference in Figure 4.13. Two of these are used exclusively at client start-up. The third 
is for debugging and measurement, while the fourth is the only one of the administrative 
functions used during the course of normal Odyssey operations. 



4.6. WARDENS 59 

parseargs 

init 
pstats 
getcid 

Given a partial list of arguments in argv, try to parse 
the next and subsequent arguments. Return the num- 
ber of arguments consumed. Only function that may 
be called before init 
Set up the warden's internal data structures, if any. 
Print summary statistics to a particular file. 
Given one of this warden's onodes, return the con- 
nection to the server storing that onode. 

Figure 4.13: Warden Table: Administrative Operations 

The Odyssey client — the viceroy and wardens — may be passed arguments when it 
is started. Some of these arguments are meant for the viceroy. For example the period to 
use for bandwidth estimation. Others are meant for individual wardens. The viceroy, when 
it encounters an argument it does not understand, passes the unprocessed arguments — a 
suffix of the full argument list — to each of the wardens in turn through the parseargs 
method. 

When a warden receives this partial argument list, it looks at a prefix of the passed 
list. If the warden recognizes some prefix of the list, it returns to the viceroy the size s of 
that prefix list. The viceroy then skips those s arguments and resumes processing with the 
remainder. If the warden does not recognize the first element of the passed list, it returns 
zero, and the next warden in the wardens table is given the arguments. If the warden does 
recognize some prefix, but finds that they are malformed in some way, it returns negative 
one, and the viceroy exits; printing its own usage message as well as those provided by 
each warden in wardens. 

After all arguments have been recognized, the viceroy calls the init method of each 
warden in turn. This method sets up any internal state the warden will need in order to 
satisfy requests. Initialization may include preallocating large buffers, contacting servers, 
or the like. If the warden's init method returns successfully, the warden will be marked 
ready, and further methods may be invoked on that warden; otherwise, the warden will 
not be so marked, and objects of that warden's type will be inaccessible. The viceroy 
guarantees that no operation other than parseargs will be invoked before init returns 
successfully. 

For purposes of debugging or data collection, the viceroy may periodically need to 
record data for later examination; it is useful to have the wardens do so as well. At such 
times, the pstats method is called by the viceroy, which passes in a file as an argument. 
The warden then prints diagnostic information to that file, and returns. 

The final administrative operation, getcid, is passed an onode; the warden is to return 
the connection used to communicate with the server storing that onode. The getcid 
operation is used by the viceroy in handling resource requests on network bandwidth, a 
process described in Section 4.7.1. 
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4.6.2   Vnode Operations 

Odyssey's wardens implement a subset of the vnode operations defined by the BSD 4.4 
implementation of VFS. Because the focus of the prototype was on adaptation, Odyssey 
provides only the operations necessary to explore adaptive applications. This subset, origi- 
nally presented in Figure 3.7, is reproduced in Figure 4.14. 

lookup Given an onode and a pathname component, return 
the named onode. 

root Obtain the root object of a tome. 
access Given an onode, a credential, and an operation, return 

successfully if the user named by the credential is 
allowed to perform the operation on the onode. 

getattr Return the meta-data (attributes) of an onode). 
open Open an onode. 
close Close an onode. 
rdwr Read a buffer from or write a buffer to an onode. The 

warden is responsible for allocating the buffer which 
read operations are to fill, allowing it to satisfy reads 
from prefetched buffers. 

rdwrdisp Dispose a buffer previously returned by rdwr 
readdir Read a portion of a directory's contents. 
readdirdisp Dispose a buffer previously returned by readdir. 

Figure 4.14: Warden Table: Vnode Operations 

The first operation, lookup, is the most complex of the vnode operations supported by 
Odyssey wardens. It is passed a directory onode, and a pathname component; it is to look 
up that pathname component in the context of the directory onode, and return the named 
onode. If no such onode exists, the warden is expected to return a suitable error code. 

The warden, when yielding an onode in lookup, must identify whether it is a directory 
or a regular file. Designating an onode as a directory means only that it may be used as the 
context for a later lookup operation; regular files cannot be used as lookup contexts. Since 
such operations are handled by the warden itself, the onode's contents need not correspond 
to any particular notion of a directory; it need not even use hierarchical naming schemes. 

The component-by-component nature of name translation does impose some restric- 
tions on pathnames used by individual wardens; in particular, the character ' / ' is used to 
separate components, and cannot be part of a component name. The implications of this 
restriction on the Web warden are discussed in Section 5.3. 

While individual name translations are handled by wardens, crossing tome mount points 
is the province of the viceroy. Each warden that allows other's tomes to be mounted in its 
own is free to represent mount points as it chooses. Conceptually, a mount point is an onode 
in the mounted-upon tome that is covered by the root of the mounted tome. Upon returning 
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a covered onode, the warden marks it as such, and includes the type and tome identifier of 
the mounted tome in the meta-data of the onode. 

On return from the warden's lookup method, the viceroy checks to see if the returned 
onode is covered. If so, it invokes the root method of the warden responsible for the 
mounted tome's type, and passes the mounted tome's identifier. The warden returns the 
root onode for that tome, a pointer to which is cached in the covered onode. This is used to 
speed later crossings of this tome boundary. 

□ FFS Tome #3 

□ Mount point 

■ QuickTime Tome #7 

This figure shows a simple name space used to illustrate the process of tome boundary 
crossing. The space contains two tomes. The first is tome number 3 of the Fast File 
System type, the second is tome number 7 of the QuickTime type. The QuickTime tome 
is rooted by the unnamed onode root, and is mounted on the onode named by movies 

Figure 4.15: Tome Boundary Crossing 

Figure 4.15 depicts a simple example of a tome mounted within another. Suppose the 
Fast File System, or FFS, warden were asked to resolve the name movies in the context of 
the onode Odyssey. It would obtain the onode movies, which is part of the tome rooted 
at Odyssey; however, that onode is covered by tome 7 of the QuickTime type. The FFS 
warden returns movies marked as covered, with the both the QuickTime type identifier 
and the tome number 7 in its meta-data. The viceroy, on discovering that the movies 
onode is marked as covered, asks the QuickTime warden, via its root method, for the root 
onode of tome 7. 

The access and getattr methods are both simple. A warden's access method 
is passed an onode, a user credential, and one of three possible operations: read, write, or 
execute.6 The warden is to return successfully if the named user is allowed to perform the 
operation on the onode. 

The getattr operation is passed an onode, and is expected to fill in an attribute 
structure for it. This function is supported to enable standard UNIX applications which use 
the st at system call, such as Is, to work within Odyssey. Wardens are expected to fill in 
as much of the attribute structure as is meaningful for their data. 

The open and close operations work together as a pair. Wardens are notified of every 
open and close on objects in their tomes so that they can perform whatever internal 

6The "execute" operation is interpreted differently for files and directories; for the former, it means "exe- 
cute the file," for the latter, it means "perform a lookup in this directory." 
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bookkeeping might be necessary for caching or other activities. The viceroy manages the 
reference counting of onodes themselves, to prevent the flushing of an active onode. 

At open time, the warden can aggressively fetch the entire contents of the opened 
onode, and store the contents in a container file on the client's local disk. It marks the 
onode as cacheable, as mentioned in Section 4.4.2, and returns in the meta-data of the onode 
the number of the device on which the container file is kept, and the inode number of the 
container file on that device. This information is returned to the interceptor by the viceroy; 
the interceptor can then satisfy future reads and writes by forwarding them directly to the 
VFS file system responsible for the container file. On the close of a cacheable onode 
that was open for writing, the warden is expected to flush the dirty container file back to 
the server storing that onode; since the warden is not aware of individual writes, it cannot 
forward them as they happen. 

There are situations where an entire object cannot be stored on disk at open time; 
such onodes are marked uncacheable. Because there is no container file for them, reads 
and writes on uncacheable onodes cannot be satisfied by the interceptor. Instead, they 
must be forwarded to the warden responsible for that onode. For example, objects on 
servers accessible only by a very slow link should be streamed to the application using 
them. Likewise, very large objects should always be streamed, and never stored in their 
entirety. 

Reads from and writes to uncacheable onodes are satisfied the appropriate warden's 
rdwr method. For writes, the warden is passed a byte offset into the object, a buffer of 
new data, and the length of that buffer; it applies the update to the object. Since the warden 
sees individual updates to uncacheable onodes, it may send those updates to the server at 
any time, not just at close. 

For reads, the warden is asked to return some number of bytes starting at a particular 
offset. The warden is responsible for allocating and returning the buffer holding the result. 
This allows a warden to return data that has been prefetched without forcing an extra copy 
ofthat data. The rdwrdisp operation is used by the viceroy to dispose of this read buffer 
after the results have been returned to the interceptor. 

The readdir and readdirdisp7 are analogous to rdwr and rdwrdisp, but are 
used to satisfy reads from directories rather than regular files. If a warden that implements 
a directory structure unlike that standard UNIX is to return valid data for readdir, it must 
coerce its own format into that expected by the NetBSD kernel. 

4.7   API Extensions 

Odyssey provides two API extensions to the standard UNIX interface: resource requests, 
and type-specific operations. These two involve each of the preceding components de- 
scribed in this chapter, and are used by Odyssey applications to gain awareness of their 

7As of this writing, readdir does not supply its own buffer, but rather uses one created by the viceroy. 
The benchmarks used to evaluate Odyssey make no use of readdir, however, and thus are not effected by 
this slight discrepancy. 
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environment, and react to significant changes to it. Each extension is described from the 
point of view of its use by an application. 

4.7.1   Resource Requests 

The resource request API, introduced in Figure 3.4, is implemented by a combination of 
a run-time library, kernel support, and the viceroy, and includes extensions to the vnode 
interface that are implemented solely by the Odyssey VFS driver. The implementation also 
makes use of the upcall subsystem for notification delivery. 

Only the application and viceroy need to agree on resource requests; the kernel itself 
need know nothing about the details of individual requests. Furthermore, the sizes and types 
of notification arguments, shown in Figure 3.4, are always the same. Therefore, all notifica- 
tions, and hence requests, are multiplexed onto a single upcall, ODYJSTOTIFICATION, just 
as all upcalls are multiplexed onto one signal. The library maintains a hash table mapping 
resource requests to registered handlers. 

This simplifies the implementation of resource requests, and minimizes the interactions 
between the kernel, application, and viceroy during request placement and notification. 
The runtime library need only register for a single upcall during initialization; all remain- 
ing work for request handling is between the application and the viceroy. Resource requests 
are forwarded to the viceroy, which records them in structures called resource request lists. 
When, in the course of monitoring resource availability, the viceroy discovers that granted 
requests are violated, it uses the upcall subsystem directly to notify the requesting applica- 
tion. 

The remainder of this section describes the implementation details of resource requests, 
by examining request placement, cancellation, and notification in turn. Each of these activ- 
ities involves many different Odyssey components. For reference, Figure 4.16 summarizes 
the public and private library routines supporting upcalls; reception of upcalls is blocked 
during all of these routines. Figure 4.17 lists the system calls supporting the library's API 
implementation, one system call per function in the API. Finally, Figure 4.18 lists the vnode 
operations added by Odyssey in support of requests. 

ody.request      Place a resource request; reference item named by 
pathname. 

ody_f request    Place a resource request; reference item named by 
file descriptor. 

ody_cance 1        Cancel a request. 

mit 
uchdlr 

Set up hash table, register upcall handler. Private. 
Routine which handles notification upcalls;   dis- 
patches them to the appropriate handler. Private. 

Figure 4.16: Request Library Routines 
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-ody_req 

_ody_f req 

-ody_cancel 

Tell kernel about a resource request; reference item 
named by pathname. Called by ody_request. 
Tell kernel about a resource request;   reference 
item   named   by   file   descriptor.        Called   by 
ody.frequest. 
Tell kernel/viceroy about a cancelled request. Called 
by ody.cancel. 

Figure 4.17: Request System Calls 

vop_req Forward a request to the viceroy.      Called by 
_ody_req and _ody_f req. 

vop-cancel Forward a cancel  to  the  viceroy.      Called by 
_ody_cancel. 

vop_cancpid Tell viceroy to drop all requests for a particular pro- 
cess. Called by the kernel's internal exit and exec 
routines. 

Figure 4.18: Request VFS Operations in the Interceptor 

Request Placement 

When an application makes a resource request, that request is first fielded by the library. 
If this is the first request ever placed by this application, the library first calls init. This 
function sets up the hash table that maps notifications to handlers, and registers uchdlr 
to handle the single upcall supported by the Odyssey upclass. 

Once the library has initialized itself, the request is passed to the kernel by either 
_ody_req or _ody_f req. The _ody_req routine calls namei to translate the pathname 
to a vnode. This will make use of the interceptor's cached name translations if present, or 
will call the viceroy and appropriate wardens if they are not. The _ody_f r eq routine looks 
in the process's open file table for the vnode backing the named file descriptor. 

Once a vnode is in hand, these routines call vop_req. This operation is only imple- 
mented for Odyssey vnodes; other file system types will return an error code. The vop_r eq 
routine is part of the interceptor; it packages the request for the viceroy and forwards it. 

The viceroy obtains the request, and decodes it to see which resource is requested. 
Recall from Section 3.3.2 that network bandwidth — the focus of the prototype — is an 
item-specific resource; that is, it must be evaluated in the context of a particular onode. 
This is because different onodes might be stored on different servers, and the bandwidth 
available might differ from server to server. Thus, when a new bandwidth request arrives 
at the viceroy, it must first determine the connection to which the request applies. It does 
so by invoking the onode's warden, via the getcid operation in Figure 4.13. This opera- 
tion, given an onode, returns the connection used by the warden to communicate with that 
onode's server. 
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Each distinct resource in Odyssey keeps a list of previously granted requests called re- 
source request lists, or RRLs. In addition to previously placed requests, an RRL has as state 
the current value of the resource. The key operations provided for RRLs are summarized 
in Figure 4.19. 

insert 

set-value 

cancel 

purge 

Given a resource request list, and a request, attempt 
to place the request on the list. If the current value of 
the resource is within the window, grant the request 
and return a request identifier; otherwise, deny the 
request, and return the resource's current value. 
Change the resource's current value. If this new value 
violates any previously granted requests, return them 
so that they can be notified. 
Remove a specific request, named by its identifier, 
from the resource request list it is on. 
Remove all requests placed by a particular process. 

Figure 4.19: Vnode Operations in an Upclass Descriptor 

Once the viceroy has the correct RRL in hand, it tries to insert the new request into 
the RRL. The new request's bounds are checked against the RRL's current resource value. 
If the value is out of bounds, the viceroy returns an error code along with this current value; 
these are propagated back through the call chain to the requesting applications. Otherwise, 
the request is placed in the RRL. 

The viceroy adjusts its estimates for all resources frequently, but applications place 
resource requests relatively rarely. This means that updates to the resource value in an 
RRL, via set .value, will be a much more common event than the placement of requests 
on that list. Therefore, RRLs are optimized for set_value rather than insert. RRLs 
are implemented as two sorted lists of request bounds, one descending and one ascending. 
Each previously granted request that is still valid has its lower bound on the descending list 
and its upper bound on the ascending one; each pair of bounds is linked together. 

All requests in all RRLs are also indexed by unique identifier, as well as by request- 
ing process. The data structures providing these access paths are implicitly managed by 
the routines in Figure 4.19. This facilitates cancellation of previously held requests, as 
discussed in the next section. 

Figure 4.20 illustrates an example of insertion into a resource request list. The viceroy 
would like to insert a request with bounds (17, 29) into the list in Figure 4.20(a). The 
request operation first checks to see that the current value of the fist is within the re- 
quested bounds. It is, so the lower bound is insertion-sorted into the descending list, and 
likewise for the upper bound in the ascending list. The result is shown in Figure 4.20(b). 
Since valid requests enclose the resource's value in their bounds, the largest value descend- 
ing list is less than the resource, while the smallest value in the ascending one is greater. In 
the common case of updating the resource value without invalidating a request, only two 



66 CHAPTER 4. IMPLEMENTATION 

12 20 27 
%    + 

12 17 20 27 29 
I 

(a) Before Insertion (b) After Insertion 

This figure illustrates a simple resource request list. In Figure 4.20(a), only a single re- 
quest with bounds (12, 27) is in the list, whose current value is 20. A later request of 
(17, 29) can be inserted, since the list's current value is within the request bounds. The 
list with the new request inserted is shown in Figure 4.20(b). Notice that entries in the two 
sorted lists that are from the same request are linked with one another. 

Figure 4.20: Illustration of Resource Request Lists 

comparisons are required. 
When a request is successfully inserted, insert returns a new request identifier. These 

are guaranteed to be unique across all resources. This identifier is passed back through the 
call chain to the Odyssey library, which records the identifier along with the handler to be 
invoked if the application is notified that the granted request is violated. 

Request Cancellation 

A previously granted request can be removed in one of two ways. First, an application 
may explicitly cancel a previously granted request through ody.cancel. Second, all of 
an application's outstanding requests are implicitly cancelled on either exit or exec. 

Individual requests are cancelled through the library's ody_cancel routine, which 
immediately forwards the request to the kernel using the system call _ody_cancel. This 
routine invokes vop_cancel on a special file called the control file, forwarding along the 
identifier of the request to cancel. The control file is a hidden, nameless file in the root of 
the Odyssey name space that is used for two purposes. First, system calls that, for whatever 
reason, do not have a reference to an Odyssey vnode may use it to forward general Odyssey 
operations to the interceptor, and thence the viceroy. Second, the interceptor itself may need 
to send messages to the viceroy that are not associated with any particular Odyssey object. 

When the viceroy receives the cancel request forwarded from the interceptor, it uses 
the cancel operation to remove the cancelled request from the RRL it resides on. Note 
that cancel operates on all RRLs in the system, rather than just one. This is because the 
application requesting cancellation cannot know which RRL the request had been kept on. 

After cancellation, a successful return code is propagated back through the call chain 
to the library. The library then removes its record of this identifier/handler pair, and returns 
success. 

Process-wide cancellation is handled similarly. A process that, at any time, attempted 
to place a request will have an upcall handler registered for ODYJJPCALL. When that pro- 
cess exits or calls exec, its handler for that upcall is deregistered by the upcall subsystem. 
When this happens, the Odyssey upclass descriptor's not i f y routine is invoked; this rou- 
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tine must cancel that process's outstanding requests.8 

It does so by invoking the vop.cancpid operation on the control file. This operation 
passes the process identifier for which the deregistration is being handled up to the viceroy. 
The viceroy then calls purge, which removes any requests placed by that process. Just as 
with cancel, purge must look at all RRLs, since a process may have requests on more 
than one resource. 

Notifications 

When the viceroy updates an RRL's current resource value, set_value will return a list of 
previous requests that are no longer met, called the notify list. This list of requests is passed 
to do_not i f y, a private routine in the viceroy; its job is to post the required notifications 
to each process with a request in the notify list. 

For each request in the notify list, the viceroy extracts the process identifier from the 
request, and posts an ODY_NOTIFICATION upcall to that process. This upcall is posted 
asynchronously so that it won't unnecessarily delay the notifications to later processes in 
the fist. 

struct ody_ucargs_t { 
int oua_regid; 
unsigned int oua_rsrc; 
int oua_rval; 

}; 

Figure 4.21: Arguments for ODY_NOTIFICATION 

When a notified process next is able to receive signals, that process's catch_upcall 
routine will field the posted upcall. The arguments to this upcall appear in Figure 4.21; there 
are no return values. The catch_upcall routine extracts the arguments, and removes the 
record of this identifier and associated handler from its hash table. It then calls the handler, 
passing the request identifier, resource identifier, and resource value. 

4.7.2   Type-Specific Operations 

The implementation of type-specific operations, the API for which was introduced in Fig- 
ure 3.8, is straightforward. Both functions in the API are implemented as system calls. 
Figure 4.22 summarizes these system calls, the single vnode operation added by Odyssey 
to support them, and the two functions in the warden table which together implement them. 

8Of course, the notify routine also is called when the handler is initially registered, but it doesn't 
perform any special handling at registration time. It is also possible that no such outstanding requests are 
currently in place; however, since the kernel does not keep track of resource requests, there is no way to 
know whether or not that is the case. Therefore, the deregistration is merely a hint that requests need to be 
cancelled, and the kernel conservatively informs the viceroy. 
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ody_tsop Perform a type-specific operation on some Odyssey 
object; this object is named by pathname. 

ody_f tsop Perform a type-specific operation on some Odyssey 
object; this object is named by file descriptor. 

vop_tsop Vnode operation called by both ody.tsop and 
ody_ftsop. Packages arguments and forwards 
them to the viceroy. 

t sop Warden's function to handle type-specific operations. 
Responsible for allocating result buffer, if any. 

tsopdisp     Warden's function to dispose result buffers returned 
by tsop. 

This figure lists the functions that together implement type-specific operations. There are 
three levels of the system providing these functions, and the figure is divided by level. 
The top portion of the figure lists the two system calls applications can use to request a 
type-specific operation be performed. The middle portion lists the single VFS operation 
Odyssey adds in support of these two system calls. The bottom portion lists the two 
functions in the warden table used to satisfy these operations. 

Figure 4.22: Vnode Operations in an Upclass Descriptor 

To invoke a type-specific operation, an application may use one of two calls; the only 
difference between them is the way in which an application specifies the object upon 
which to operate. The first call, ody_tsop, names the object by pathname, the second, 
ody_f tsop, by open file descriptor. Upon entry into the kernel, these translate pathname 
or file descriptor into a vnode in the same manner as _ody_req and _ody_f req, described 
in Section 4.7.1. 

These two then invoke vop_t sop on the resulting vnode, passing along arguments and 
a result buffer. As with the three VFS operations in Figure 4.18, vop_t sop is implemented 
only for Odyssey's vnodes. This interceptor routine packages the arguments and delivers 
the request to the viceroy. 

The viceroy checks the arguments for validity, and then looks at the type field of the 
operand's of id. It looks up the warden table for that type, and passes the type-specific 
operation to that warden's tsop method. 

This method then carries out the requested operation. If there are any results to be 
returned, the tsop method is obligated to supply the result buffer and to fill it; as with 
rdwr or readdir, this allows wardens to fulfill type-specific operations from cached 
data without extra copying. After the viceroy returns the results to the interceptor, it calls 
the warden's tsopdisp method, to dispose of the result buffer supplied by tsop. The 
results are then propagated back through the call chain to the application. 
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4.8   Summary 

The Odyssey prototype was built to answer three questions. First, can the Odyssey API 
and architecture support application-aware adaptation? Second, can the viceroy estimate 
resources, such as network bandwidth, not directly under the client's control? Third, is the 
presence of a single point of resource control required to support concurrent applications? 
The areas of the prototype upon which implementation effort was focused were chosen 
with these three questions in mind. 

The prototype itself makes use of two important NetBSD mechanisms: signal delivery 
and the virtual file system. Signal delivery is used heavily in the implementation of upcall: 
an asynchronous notification mechanism that has exactly-once, in-order semantics that can 
pass arguments and return results. The virtual file system, or VFS, is the mechanism by 
which the Odyssey name space is integrated into the client's file system; the stackable 
layers extension is used to implement Odyssey-specific extensions to the VFS operations. 

The Odyssey portions of a client's file system are managed in-kernel by the interceptor. 
This code component forwards file system requests to the viceroy, when then dispatches 
them to the appropriate warden. Wardens implement all operations on objects of their type; 
they are free to customize these operations, such as lookup, to their liking. 

In addition to dispatching these requests to wardens, the viceroy also encompasses the 
connection manager. This provides the connection abstraction to wardens, and provides 
estimation of available bandwidth. This estimation is purely passive, and is the viceroy's 
best guess as to the bandwidth each connection will receive in the immediate future. 

The two API extensions, resource requests and type-specific operations, make use of 
all of the components of the prototype. Requests depend on upcalls for notification, and 
resource request lists in the viceroy for efficient checking of previously granted requests. 
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Chapter 5 

Applications 

To exercise the Odyssey prototype, a small set of applications were chosen and modified 
to take advantage of application-aware adaptation. The applications were chosen with a 
number of goals in mind: 

• They should provide experience in porting applications to Odyssey's adaptive model. 
They therefore must be real applications that one might wish to use in a mobile 
setting, rather than simple, toy applications. 

• They should span a broad a range, using a variety of different data types, supporting 
a variety of different fidelity levels. 

• To explore the needs of binary-only, or shrink-wrapped applications, at least one 
application for which source code is not available should be made to use Odyssey in 
some way. 

The three applications chosen were: XAnim, a video player; Netscape, a web browser 
for which source was not available; and Janus, a speech recognition system. Each appli- 
cation uses a different data type, and has its own warden and server, giving a broad range 
of experience. They are all real applications that enjoy significant use, and each presents 
unique challenges in integration with Odyssey. 

These applications, wardens, and servers were all written by other students at Carnegie 
Mellon; this shed some light on the difficulty of integrating new data types with Odyssey as 
well as writing adaptive applications. However, the author did provide significant direction 
in the nature and structure of these components. 

5.1    Application Metrics 

The central addition to each application was some adaptive policy; the strategy that appli- 
cation would use in trading fidelity for performance. In order to express such a strategy, the 
application must first have metrics for fidelity and performance. 

The data accessed by each application has a number of different fidelity levels, each 
of which is assigned a fidelity value, /. The fidelity metric is such that V/ : 0 < / < 1. 

71 
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Fidelities are assigned based on some measure of data quality; larger fidelities imply better 
quality. A fidelity of one corresponds to reference-copy quality. A fidelity of zero would 
mean that the data delivered has no useful information; obviously, no data item would 
actually have assigned to it a value of zero. Though fidelities are quantitative, the only 
restriction on their assignment is that they have a full relative order. Thus, they may only 
be compared directly; differences between fidelities are not comparable. Such indirect 
comparisons would require a fixed, defined scale within the range. 

Each application has associated with it a performance metric, chosen with the applica- 
tion's data access needs in mind. This metric, together with fidelity, allows an expression of 
an adaptive policy. These policies are not meant to produce the best possible adaptive appli- 
cation. Selecting such policies would require spending significant effort in understanding 
user preference; such an undertaking is beyond the scope of this work. The question is 
not whether these applications have the best fidelity policies, but rather: Once an applica- 
tion selects some reasonable adaptive policy, how well can that policy be supported by the 
Odyssey prototype? 

Sections 5.2-5.4 describe each of the three applications in turn. Each section describes 
the application, warden, and server, as well as how these components are integrated into 
the Odyssey prototype. It then defines the fidelity and performance metrics, and the fidelity 
policy of the application. 

5.2   Video Player: XAnim 

The first application to be added to Odyssey was XAnim, a video player whose source code 
is publicly available [57]. In its original form, XAnim reads a movie file from a local disk 
and plays it back to the screen, skipping late frames to maintain pace through the file; it 
was approximately 57 thousand lines of code in total. The main data type used by this 
player in the context of Odyssey is QuickTime, a standard video format defined by Apple 
Computer [4]; this format has an explicit time base in which the video stream is encoded, 
and provides facilities for many different representations. 

5.2.1   Integration with Odyssey 

Dushyanth Narayanan split this single application into a client, warden, and server. Adding 
these components to Odyssey was straightforward; they are illustrated in Figure 5.1. The 
server is a relatively simple piece of code consisting of five thousand lines, of which one 
thousand were added to or modified in the original player. It stores each movie as a number 
of pre-computed versions called tracks; each at a different fidelity. One could as easily use 
an on-line scheme, that degraded video images on the fly [24]; at present, our QuickTime 
server does not do so. 

The number and sizes of tracks available for each movie are part of that movie's meta- 
data. The meta-data also specifies, for each track, the sizes and offsets of each frame in 
that track. The warden, which handles QuickTime data at the system level, can obtain this 
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Figure 5.1: Integration of XAnim with Odyssey 

qt_open 

qt_getframe 
qt_get f rame_at 

Open a QuickTime movie, return a vector of track 
descriptions, one per track. 
Get frame number N from track T 
Get the first frame to be displayed at or after time t 
from track T. 

Figure 5.2: QuickTime Access Methods 

meta-data from the server, and fetch a range of bytes from a particular track. The warden 
is responsible for mapping a track's frames to byte ranges within that track; the server 
provides no such mapping. The warden also prefetches data from the server, anticipating 
that the most common client behavior is sequential access within a single track. Like the 
server, the warden is a relatively small piece of code at 2.5 thousand lines. 

The client obtains movie data entirely through type-specific access methods, rather than 
the more cumbersome read interface. This enables a simplification of the client, removing 
7.5 thousand lines. These operations are summarized in Figure 5.2, and described below. 

On qt-open the warden fetches the movie meta-data and builds two frame maps. The 
first translates time offsets to frame numbers for each track of the movie. The second 
translates frame numbers to byte ranges. Once these are constructed, the warden returns 
the track summary to the application that called qt.open. 

On qt.get frame, the warden translates the frame number to a byte range. If the 
requested frame is in the warden's prefetch buffer, it is returned. If it is not present, the 
warden returns the frame from a better quality track if it is present. If either of these are 
not present, the warden fetches it from the server on demand. Less than six hundred lines 
of code needed to be added to the client to use this new interface. 

A background thread belonging to the warden prefetches frames from the last track re- 
quested by qt _get frame; this prefetching is controlled by two parameters, highwat er 
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and lowwater. Whenever there are fewer than lowwater bytes in the prefetch buffer, 
the warden prefetches frames until the prefetch buffer contains at least highwat er bytes. 
If higher-quality frames are present when an application requests a lower-fidelity track, 
the better frames are retained. Conversely, lower-quality frames are discarded and the re- 
quested higher-quality ones are fetched on demand. 

5.2.2   Metrics and Policy 

In the experiments reported in Chapter 7, each movie has three tracks. These three versions 
are: JPEG-compressed [83] color at quality 99, JPEG-compressed color at quality 50, and 
black-and-white. Each track is encoded at ten frames per second. The overhead for this 
extra storage is modest: typically 60% more space than storing only the highest-fidelity 
track. 

Individual frame fidelities are assigned as 1.0, 0.50, and 0.01 to JPEG(99), JPEG(50), 
and black-and-white frames, respectively. Over a single execution of the player, the achieved 
fidelity metric is the average of the fidelities of the displayed frames; higher average fidelity 
means that displayed frames were, on average, of a better quality. Thus a movie with half 
of its frames displayed from each of the two best tracks would have a fidelity of 0.75. 

The client's performance metric is the number of frames it is forced to skip due either to 
frames arriving late, or the player having been delayed in decoding. If a frame arrives after 
its deadline, it will be dropped rather than shown. If a frame is more than one frame-time 
late, then the client will skip past frames that should have been shown while the late frame 
was being obtained. 

Of course, user perception of "quality" of playback includes many other factors. For 
instance, dropped frames certainly influence the perception of quality. Some number of 
frames dropped consecutively will be perceived as worse than the same number dropped 
intermittently. However, precisely capturing such notions is beyond the scope of this work. 
Rather, these metrics are meant to capture two factors which the video player balances in 
its adaptive decisions. 

The client's fidelity policy is to play the best quality track possible without dropping 
any frames. When the client opens a movie with qt.open, it calculates the bandwidth 
required to play each track in the movie. From these calculations, the client derives a set of 
bandwidth ranges appropriate to each fidelity. These ranges are defined with some overlap, 
and select for fidelities aggressively. The lower bound in a track's range is set to 95% of 
the bandwidth nominally required to support it; the upper bound is the minimum nominally 
required for the next higher track. 

After opening a movie, the client places a resource request on the bandwidth for the 
highest quality track, and begins playing frames from that track. Whenever it is notified 
that the bandwidth has strayed outside of the bounds for the current track, it changes the 
track from which it is requesting frames, and places a resource request appropriate to the 
new track's bandwidth requirements. 
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QuickTime data, using these three encodings, lends itself particularly well to an adap- 
tive policy switching between tracks. This is because each frame can be rendered in isola- 
tion, without need for some reference frame. However, one could easily extend this notion 
to a format with inter-frame compression, such as MPEG [35], by restriction track changes 
to points in the track with stand-alone frames. 

5.3   Web Browser: Netscape 

The second application to be modified to make use of application-aware adaptation was 
Netscape Navigator, or more simply Netscape. Netscape allows the retrieval and display 
of HTML [62], a hypertext mark-up language. At the time of its adoption, the source 
for Netscape was not publicly available. It was chosen expressly as an example of an 
application for which source is not available; it provides a simple example of how such 
applications might take advantage of Odyssey's API extensions. 

5.3.1    Integration with Odyssey 

To cope with the lack of source code, Odyssey makes use of Netscape's proxy facility. 
Through it, Netscape can route all of its HTTP [22] requests for data through a designated 
process. This process is commonly on a remote host; such a remote process might act as 
a gateway that is exempt from firewall restrictions, or a caching proxy for a group of ma- 
chines [43]. Instead, Odyssey places the proxy, called the cellophane, between Netscape 
and Odyssey, redirecting Netscape's requests through the file system to Odyssey. The cel- 
lophane is quite small, at three thousand lines of code. It is this re-routing that ensures that 
Netscape's network traffic will be visible to the viceroy. 

Any application with a proxy mechanism could make use of Odyssey in this way. How- 
ever, those without some sort of explicitly mechanism would require a more sophisticated 
approach. For example, one could intercept file and network I/O system calls to redirect 
them to the viceroy. Binary rewriting could also be used with more difficulty. 

The Web is integrated into the Odyssey name space as a single tome. The root of 
this tome is an onode marked as a context onode, and lookup operations on that onode 
will attempt to resolve the name component as a URL in the Web. Since URLs use the 
' / ' character, which is also used as the UNIX component separator, the cellophane must 
convert all instances of ' / ' appearing in a URL to backslashes. 

The HTML warden handles all of the cellophane's requests. It is less than five thou- 
sand lines of code. It forwards all such requests to a remote distillation server, which is 
presumed to be well-connected to the rest of the Web. 

The distillation server, at five thousand lines of code, fetches HTML pages and associ- 
ated images in response to requests, and forwards them to the HTML warden. It is capable 
of degrading images on the fly using JPEG compression to shorten their transmission time 
from the distillation server to the client. These components — cellophane, warden, and 
distillation server — were implemented by Eric Tilton, and are depicted in Figure 5.3. 
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HTTP ./?,, > Web 
servers 

Figure 5.3: Integration of Netscape with Odyssey 

webw-setqual    Set desired quality for images 
webw_getqual    Obtain desired quality for images 
webw_sethdr      Pass along request headers for the next requests 
webw_stat Obtain the headers for a particular page 

Figure 5.4: HTML Type-Specific Operations 

Odyssey focuses on images for two reasons. First, they make up a majority of all 
bytes served on the Web [48]. Second, there exists a natural degradation method — JPEG 
compression — that gives good size reductions while yielding tolerable quality. No such 
obvious degradation exists for text in HTML pages.1 

The Web warden exports four type-specific operations; two have to do with the fidelity 
of images, and two are used to help integrate the Web into the client's file system. They are 
summarized in Figure 5.4. 

The webw_setqual operation is used by the cellophane to set the desired level of 
compression for images fetched. It is set based on current bandwidth as described in Sec- 
tion 5.3.2. The webw_getqual operation is used by the cellophane to query the current 
quality setting. 

The other two operations handle meta-data for HTTP requests and responses. A re- 
quest for a Web object carries with it request headers, which can affect the content of the 
fetched objects. To pass these request headers to the Web warden, an application uses the 
webw_sethdr operation. Each page can have associated with it a separate set of meta- 

1 Presently, the distillation server distills only GIF images, not JPEG images. However, as reported in [48], 
more than half of all image bytes served are from GIF images. Furthermore, JPEG to JPEG distillation has 
been fruitfully pursued by Fox [24]; extending Odyssey's distillation engine should therefore be straightfor- 
ward. 
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data, called simply headers. An application obtains these by the webw.stat call. 

5.3.2   Metrics and Policy 

The distillation server, in addition to passing images unchanged, has three distinct levels of 
degradation available to it, for a total of four levels of fidelity. These levels of degradation 
consist of JPEG compression at quality levels 50, 25, or 5; lower numbers produce smaller 
but lower-quality images. These degraded qualities are assigned fidelity levels of 0.5, 0.25, 
and 0.05, respectively; the original image is assigned a fidelity level of 1.0. The distillation 
server degrades only those images for which it is expected to provide a benefit — images 
2 KBytes or larger. For smaller images, the effort to distill them takes longer than simply 
forwarding them on all but the very slowest of networks. The f 

The performance metric for Netscape is the time to load and display a particular HTML 
object; in the case of our benchmarks, all objects are single images. Netscape's fidelity 
policy is to load the best quality image possible within twice the expected time to load 
the reference quality image at Ethernet speeds. This heuristic is based on the following 
intuition: there is little utility in loading an image faster, since users typically are willing 
to wait roughly as long as an Ethernet might take. However, much longer waits, albeit for 
better quality images, are not likely to be tolerated. As with XAnim's policy, this policy 
may not reflect the actual desires of users; rather, it was chosen to provide a reasonable 
policy to support in the Odyssey prototype. To correctly calibrate to user's desires would 
require human factors experiments. 

For each of the four fidelity levels available, the cellophane selects a bandwidth range 
appropriate to that fidelity level. These ranges are currently hard-coded in the cellophane, 
and were based on a small set of experiments measuring times to perform JPEG compres- 
sion and resulting reduction in size. As the bandwidth between the warden and distillation 
server changes, the cellophane adjusts the distillation level of images served. 

5.4    Speech Recognizer: Janus 

The final application modified to take advantage of Odyssey is Janus [82], a speech recog- 
nition system. Janus takes as input a raw, sampled speech utterance collected from a micro- 
phone, and returns the words it recognizes in the utterance. This process is very expensive 
in both CPU cycles and virtual memory. Since the mobile host is relatively underpow- 
ered compared to a similarly-priced desktop workstation, it would be useful to offload this 
computation whenever possible. 

The recognition process has two interesting phases. The first is vector quantization [61], 
a signal processing step that transforms the raw speech utterance into a much more com- 
pact representation. This phase is relatively inexpensive to compute. The second phase 
consists of the remainder of recognition, and comprises the bulk of the processing required 
in recognition. 
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5.4.1   Integration with Odyssey 

This application is quite different from the others; speech data is not something that is 
merely accessed, but rather it is generated at the client and computed upon. When it is 
profitable to do so, this computation should take place on some remote, static host. 

Despite the fact that Janus is not strictly a data access application, it presents both con- 
siderable potential as well as challenge for mobile systems. It is especially useful when 
mobile since it leaves the user's eyes and hands free for other activities [73]. However, 
the resource requirements for high-accuracy speech recognition are substantial, especially 
when mobile, since background noise is often high. Adding higher-level semantic process- 
ing, such as language translation, leads to even greater demands on computing resources, 
which are already in short supply on mobile machines as compared to their static counter- 
parts. 

To integrate speech within the client's file system, there is a single, distinguished speech 
tome in they system, with a single object at its root. Writing an utterance to this object 
begins recognition on that utterance. A subsequent read on that object will return the rec- 
ognized text when it is available. A simple front end, consisting of just over six hundred 
lines of code, loops collecting the raw speech utterance, writing it to the speech object, and 
reading the result. 

This utterance is forwarded to the speech warden, which is approximately two thousand 
lines of code. The warden can forward the utterance on to one of two different recognition 
servers, each a full copy of Janus with one thousand additional lines to handle communica- 
tion. These components are illustrated in Figure 5.5. 

Client 

Speech 
Front-End 

Odyssey 

Viceroy 

r 

RP.C 
Remote 
Janus 
Server 

v_ 

Local 
Janus 
Server 

Figure 5.5: Integration of Janus with Odyssey 
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The warden, when passed a speech utterance, can do one of three things. First, it 
can pass the raw, large utterance to the remote Janus server for full recognition; this is 
called remote recognition. Second, it can pass the utterance to the local Janus server for 
local recognition. Third, it can pass the utterance to the local server for just the vector 
quantization step, and pass the much smaller result to the remote server for the second 
phase of recognition; this is called hybrid recognition. The warden provides a single type- 
specific operation, speech.setstrat; the front end can use this to select one of the 
three strategies. 

5.4.2   Metrics and Policy 

Currently, there is no notion of fidelity for Janus. Both the local and remote servers use the 
same acoustical model, vocabulary, and grammar in performing recognition. Thus, there is 
no fidelity metric. 

The performance metric is latency: the time it takes to recognize a speech utterance. 
The front end has a hard-coded model for the relative computational power of the local and 
remote hosts, and a model for the costs of local, remote, and hybrid recognition. Together 
with the current bandwidth, the front end decides whether local or hybrid recognition will 
result in the fastest response. If network bandwidth is sufficiently high, remote recognition 
is best; otherwise, hybrid recognition is best. Because of the severe computational demands 
of the second phase of recognition, the front end does not use local recognition unless the 
connection to the remote host is down. 

While Janus has not incorporated fidelity levels in the course of this dissertation, Jason 
Flinn, the student responsible for integrating Janus, has been exploring altering vocabulary 
sizes. Smaller vocabularies result in less computationally intensive recognitions, but at the 
cost of user expressiveness. To cope with this changing expressiveness, this new speech 
system provides feedback to the user to keep him informed when increases or decreases in 
vocabulary occur. 

5.5    Summary 

Three applications were modified to exercise the Odyssey prototype. The main goals in 
doing so were threefold. First, this process should shed light on the difficulty in porting 
applications to take advantage of application-aware adaptation. Second, the applications 
should provide experience in designing fidelity levels and adaptive strategies. Third, some 
light should be shed on the problem of using shrink-wrapped programs in the context of 
application-aware adaptation. 

For each of the applications at hand, modifying them to take advantage of application- 
aware adaptation was relatively simple, requiring only a few hundred to a few thousand 
lines of code. In each case, the logic required for the adaptive decision loop was isolated 
from the main body of the application. This was possible because, even in degraded form, 
the application already knew how to deal with whatever data could be produced. To the 
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extent this is possible with new applications, modifying them should be similarly simple; 
the complexity of the new code should directly correspond to the complexity of the adaptive 
strategy. 

The applications are all used broadly in their original form outside this project, each 
uses substantially different data types. At present, the fidelity levels provided for each 
data type are discrete, the mechanism is in place to broaden them. Adding the on-line 
construction of fidelity levels to the video player and increasing the number of fidelity 
levels for Web images would both be straightforward. There has been substantial progress 
in adding levels of fidelity to Janus. 

Finally, the task of integrating Netscape into Odyssey's framework is an important spe- 
cial case of the general problem of working with shrink-wrapped programs. Any such 
application that provided a proxy mechanism could make use of a technique similar to the 
cellophane. More generally, techniques such as binary rewriting and system call intercep- 
tion hold some promise in integrating these applications. 



Chapter 6 

Evaluation Methodology 

Recall that there are two key issues in evaluating and comparing adaptive systems. First, 
how long does it take each system to make an adaptation decision when one is required? 
Second, when that adaptation decision is finally made, is it the right one? To answer these 
questions in the context of Odyssey, the client must be subjected to changes in available 
bandwidth, and its reactions observed and analyzed. This chapter describes the experimen- 
tal methodology used to subject an Odyssey client to bandwidth variation. 

The chapter begins in Section 6.1 describes two key features of wireless networks that 
render them unsuitable for comparative experimentation: their behavior is complex, and not 
repeatable. To cope with these challenges, the evaluation instead relies on the technique of 
transient response analysis, more commonly used in control systems, [3]; this technique is 
introduced in Section 6.2. 

The chapter then describes a technique called trace modulation. In trace modulation, a 
small layer capable of delaying or dropping all packets to or from a host is inserted in that 
host's networking stack. These delays are calculated according to a simple network model. 
The modulation process, as well as the method by which the parameters to the model are 
changed over time, is described in Section 6.3. 

In addition to being used for transient response analysis, this system can also be used 
to repeatably produce performance in an isolated, wired network that is faithful to that 
observed in some live, wireless network. This technique of empirical modulation — the 
original motivation for the trace modulation work—is described in Section 6.4. Section 6.5 
demonstrates that empirical traces do in fact re-create the performance of the original net- 
work for a range of benchmarks. 

6.1    Challenges in Wireless Experimentation 

There are numerous difficulties in using live wireless networks in the evaluation of mobile 
systems. Unlike that of wired networks, the medium over which wireless messages travel 
is difficult to isolate. When mobile nodes that are not part of the evaluation are nearby, they 
may perturb the results by injecting packets into the wireless spectrum. It is very difficult 

81 



82 CHAPTER 6. EVALUATION METHODOLOGY 

to physically prevent such packets from interfering with those of the system under test. 
Instead of physical control, one could imagine that, if all devices operating in the rel- 

evant frequency ranges cooperated, these devices could be logically restrained from inter- 
fering. However, many different kinds of wireless devices make use of the same unlicensed 
frequency ranges. For example, the WaveLAN wireless devices [6] operate in the 900 MHz 
range; many cordless phones use this range as well. These phones have no concept of media 
access protocol, and cannot be party to cooperative scheme to avoid interference. 

Even if the relevant region's wireless spectrum could be isolated from interference from 
other devices, obtaining predictable, reproducible results remains a challenge. Wireless 
propagation is affected by environmental factors that are both spatially [51] and tempo- 
rally [79] dependent; small changes in the path taken through an area of wireless coverage 
can have large impacts on performance. For example, multipath effects are extremely sen- 
sitive to small changes in position. Likewise, as different obstructions pass through the path 
between base station and mobile client, signal propagation can change dramatically. 

These difficulties present two challenges to experiments carried out over wireless net- 
works. First, the highly variable performance of wireless networks is difficult to describe 
and understand [21]. Analyzing the behavior of an adaptive system on top of such chaotic 
performance would be a daunting task. Good evaluation of Odyssey requires a testbed that 
provides performance that is more easily analyzed. 

Second, the inability to isolate wireless media combined with the unpredictable, vary- 
ing performance makes results extremely difficult to reproduce. Reproducibility of the 
networking environment is important for three reasons. First, it is essential for sound per- 
formance evaluation of a given system. Second, it is necessary for comparative perfor- 
mance evaluation of alternative mobile system designs. Third, it is valuable in debugging 
mobile systems because it enables re-creation of conditions that trigger bugs. 

As understanding of mobile networks improves, the complexity problem may be ame- 
liorated. Unfortunately, such improvement has not yet come to pass; the evaluation of 
Odyssey must rely on other means. In contrast, the lack of reproducibility is inherent in 
the very nature of wireless networks. The lack of experimental control and high variance 
combine to ensure the difficulty of carrying out live wireless experiments. 

6.2   Control Systems 

At some level, one can view an adaptive client in terms of control systems theory. In such 
a treatment, the system reacts to some set of inputs, and produces some set of outputs. The 
production of these outputs is influenced by an adaptive control system, which bases its 
decisions for the next set of outputs based on the current inputs and outputs. 

In taking this view, the various resources available to the client, and the demands on 
them, are the inputs to the system. The adaptive decisions made by the applications running 
on that client are the resultant outputs. The adaptive control system is the composition of 
the viceroy, applications and wardens in discovering when resource availability changes, 
deciding how to adjust fidelity in response, and effecting that decision quickly. 
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One of the basic techniques to analyze and evaluate an adaptive system is to subject it to 
a set of reference waveforms in the input signals, and study its response to those waveforms. 
Reference waveforms are typically transients — idealized, severe changes in the inputs. 

Four simple transients are shown in Figure 6.1. These and similar waveforms are simple 
and easy to analyze, but produce changes in bandwidth that are idealizations ofthat observ- 
able in the real world. For example, a step function might represent a client that switches 
from one network technology to another, while an impulse might represent a client that 
switches back and forth between two different networks. They are all characterized simi- 
larly: a sharp change in bandwidth followed by a long, steady-state period; they also restrict 
themselves to two discrete bandwidth levels throughout the waveform. 

(a) Impulse Up       (b) Impulse Down 

(c) Step Up (d) Step Down 

Figure 6.1: Simple Reference Waveforms 

These simple waveforms are especially useful in evaluating bandwidth estimation. The 
client is started with a synthetic application, consuming data as fast as possible. This client 
is then subjected to the waveforms in Figure 6.1, and the viceroy's estimations from the 
transient forward are compared to the nominal value. Ideally, the estimation should con- 
verge on the nominal value soon after the transient. The figures of merit in this evaluation 
include settling time and overshoot. Settling time is the time required after the transient 
for the estimated value to reach and remain at the nominal value. Overshoot describes the 
maximum amount by which the estimated value departs from the nominal value after it is 
reached for the first post-transient time. 

These simple waveforms are also used in evaluating applications in isolation. Each 
application is executed, subject to the waveforms of Figure 6.1. The applications' fidelity 
and performance can then be examined and compared to non-adaptive strategies. 

When the applications are run concurrently, a longer trace with more transitions is used. 
This longer trace is shown in Figure 6.2. It is fifteen minutes in duration, and alternates be- 
tween the same two bandwidths used in the shorter waveforms. It is meant to approximate 
what someone might see walking with a mobile device through a city with two different 
networks — one fast but short-range, the other long range but slow — that together imple- 
ment an overlay network. As the visitor walks through the city, his device switches between 
the two technologies every few minutes. Again, the applications' fidelity and performance 
can be analyzed in the context of this simple but stressful waveform. 
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Figure 6.2: Long Reference Waveform 

The treatment of Odyssey and its applications as a control system is necessarily infor- 
mal. Breaking the components that comprise an Odyssey client into easily analyzed units 
that behave in accordance with simply expressed rules would be challenging at best. Fur- 
ther, Odyssey as a system is certainly not linear; while impulse responses shed light on 
the behavior of Odyssey, they do not completely characterize the system. That said, the 
impulse response technique is an extremely valuable tool in evaluating adaptive systems 
such as Odyssey. 

6.3   Trace Modulation 

In addition to the inability to provide for precise experimental control, no wireless net- 
work is capable of reproducing the waveforms in Figures 6.1 and 6.2. Instead, they are 
realized through a technique called trace modulation. This technique provides application- 
transparent emulation of some target network on a LAN by modifying NetBSD's network 
layer; all other components of the host above the network layer of the protocol stack are 
exactly as they would be in a live system. The modified layer drops or delays packets 
in accordance with a concise, time-varying list, or trace, of performance parameters for a 
simple network model. Unlike most trace-based systems, modulation influences the envi- 
ronment in which a system operates rather than generating the workload for that system. 
In other words, trace modulation creates a synthetic environment in which to execute a real 
workload, rather than create a synthetic workload in a real environment. 

Section 6.3.1 describes the simple, linear, network model that underpins trace mod- 
ulation. The process of trace modulation, the actual delaying or dropping of packets, is 
described in Section 6.3.2. Finally, Section 6.3.3 describes how traces of model parameters 
are passed to and used by the replay layer. This, combined with simple tools to generate 
synthetic traces, can be used to create the waveforms in Figures 6.1 and 6.2. 

6.3.1   Network Model 

The modulation layer requires some simple model in order calculate the delay of and prob- 
ability of dropping packets in a test host. The particular model selected drives everything 
from the implementation of the layer itself to the technique of observing and reproduc- 
ing the performance of live wireless networks. Simplicity rather than sophistication is the 
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keystone of the network model. It must be able to capture wide changes in network per- 
formance within a few hundred milliseconds. It must be possible to derive parameters to 
the model based on relatively simple observations from a single host; because fine-grained, 
well-synchronized clocks are not yet available for mobile machines, collecting observations 
from two hosts is not tenable. 

Much of the complexity of wireless networks arises from temporal variation caused 
by changes in location, physical environment, or cross traffic. Trace modulation copes 
with this complexity while preserving simplicity by decomposing time-varying behavior 
into a sequence of short intervals of invariant behavior, much as a complex curve can be 
approximated by many short line segments. The model itself is most easily described by 
first treating the case of single packets, and then turning to multiple, queued packets. 

Single Packet 

Consider two hosts, Hx and H2, with Hi sending packets to H2 over some network N. 
This network may also be carrying cross traffic, defined as any traffic through N that is not 
between Hi and H2. Such cross traffic may change over time, and will affect the delays 
and losses experienced by any traffic between Hi and H2. 

Consider the end-to-end path from Hi to H2 to be a series of m service queues, 
<?i, <?2, • • • qm- Each queue's instantaneous service time is modeled deterministically, as 

h = fk + svk (6.1) 

where tk is the total delay imposed by queue qk, fk is a fixed, per-packet cost, s is the size of 
the packet in bytes, and vk is a variable, per-byte cost. In physical terms, Vk is the inverse 
of the instantaneous bandwidth of the network element k; fk is the current transmission 
latency of that element, and is the sum of queueing, per-packet processing, and propagation 
delays. For a single packet traversing this network, the total delay experienced from Hi to 
H2 is: 

A   =   ^2fk + sJ2vk (6-2) 
=   F + sV (6.3) 

It is important to note that each queue k services cross traffic as well as direct traffic be- 
tween Hi and H2. This means that the delays and losses experienced by traffic between Hi 
and H2, and hence the values of fk and Vk, change over time as cross-traffic load changes. 
The quantities fk and Vk are thus intended to capture delays as experienced by traffic from 
host Hi to H2, rather than some static properties of the queue. 

Multiple Packets 

The approach to modeling queueing delay from Hi to H2 through N is also simple. As 
above, an individual queue's service time is broken up into fk, the transmission latency over 
that portion of the network, and Vk, the per-byte cost induced by bandwidth constraints. The 
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model holds that the maximum throughput at any individual queue is dependent only on the 
Vk term and the sizes of packets. Single single-byte latency, fa, is overlapped and causes 
no queuing delay. 

Since the connection between hosts Hi and H2 is a serial string of such queues, the 
overall throughput is determined by the largest per-byte cost, max(m.) at some particular 
qk. We call this bottleneck queue qb, its per-byte costs, \\, and the residual per-byte costs, 
Vr. By definition, V = H + Vr, allowing Equation 6.3 to be rewritten as 

A = F + s(Vb + Vr) (6.4) 

For a given time segment of duration d, there are a single set of delay parameters: F, H, 
and Vr\ these are combined into a delay tuple of the form (d, F, Vj,, Vr). By composing a set 
of these delay tuples into a list, V, one can model arbitrary changes in delay as perceived 
by traffic flowing from H} to H2 over Ar. 

However, delay is only one aspect of network performance; the other is packet loss. 
Losses are modeled as a probability L of dropping a given packet during the interval d; 
each packet in d has the same chance of being dropped. The model, which is above the 
datalink layer, assumes that corrupt packets are coerced to lost ones. Instantaneous loss 
and delay behavior is combined into a sequence of five-element network quality tuples, S, 
of the form (d, F, H, Vr, L). Such a sequence, the replay trace, describes network quality 
over time. 

6.3.2   Modulation Layer 

The modulation layer, placed between the network and interface layers of the protocol 
stack, delays or drops packets according to a particular network quality tuple, s € S; these 
tuples can be created synthetically or by empirical observation of some live wireless net- 
work. The modulation layer acts on both inbound packets — those headed up the protocol 
stack — as well as outbound packets headed down the stack. Both inbound and outbound 
packets are passed through the same delay queue. The delay queue ensures that packets 
flow through it at a rate no faster than allowed by \%, and that each packet is further delayed 
by Vr and F. The delay queue also drops packets according to the loss parameter, L. 

The modulation layer is placed between the IP and Ethernet layers of the protocol stack, 
as shown in Figure 6.3. This modified protocol stack is used by the host on which we wish 
to run experiments. The two routines ntr_output and ntr intr enqueue packets at the 
delay queue. The ntr_delay routine schedules packets in this queue, one at a time, and 
forwards them or drops them after they have been delayed; it uses an on-line scheduling 
algorithm to calculate delays and drops according to the parameters found in a replay trace. 

Since modulation uses a real, physical network to transfer packets, there are limits to 
the class of networks that can be modulated. Stated simply, the modulated network must be 
sufficiently slower than the real network. Exactly how much slower the modulated network 
must be is unclear. However trace modulation has successfully recreated a 2 Mb/s wireless 
network over an isolated, 10 Mb/s Ethernet; therefore, this restriction is not particularly 
onerous. 
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(b) Stack with Modulation Layer 

This figure shows the insertion of the modulation layer in the NetBSD protocol stack. 
Figure 6.3(a) shows the original network and interface layers, while Figure 6.3(b) depicts 
the modified stack. The grey arrows signify software interrupts, while the black arrows 
are function calls. 

Figure 6.3: Modulation Layer 

Scheduling Packets 

When each packet arrives at the delay queue, it is stamped with its enqueue time. Packets 
are forwarded in enqueue order;1 therefore, the delay queue need only consider the packet 
in the queue's head at any given time. There are three times of interest in scheduling a 
packet: te, the time the packet was enqueued; th, the time at which the packet arrived at 
the head of the delay queue; and tf, the time the delay queue will next become free after 
sending the preceding packet. 

This last quantity, tf, is maintained as a property of the delay queue. Intuitively, it is 
intended to capture the cascading effect of delays induced by bandwidth, or V&, the per- 
byte bottleneck costs. Suppose that at time tlt the delay queue begins processing packetpx. 
This packet is sx bytes long, and takes a delay of sx Vb seconds to pass through the emulated 
bottleneck. According to the model, packet p2 cannot begin to pass through the emulated 
bottleneck before ty + si V&. This last quantity will be tf when packet p2 is at the head of 
the queue. 

The algorithm for delaying and dropping packets is shown in Figure 6.4. It first obtains 
the next packet to schedule from the queue's head; it was enqueued at arrived. If the 
packet was enqueued before the emulated interface will be free, the delay imposed by the 
interface cannot begin until the start time, otherwise it can begin on arrival. The loop 
then calculates when the current packet will next leave the interface free, and the send 
time, at which the current packet should be sent. 

In addition to calculating a packet's delay, the loop generates a random number to de- 
cide whether or not to drop it. The random number generator is a copy of that used by 

1This does not allow the modeling of re-ordered packets, but this has not proven to be a problem in 
practice. 
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while (1) 
packet = dequeue(queue) /* Block until not empty */ 
if (packet.arrived > free) 

start = packet.arrived 
else 

start = free 
endif 
free = start + V_b * packet.size 
send = free + V_r * packet.size + F 
if (random() < L) 

continue /* Drop packet */ 
else 

sleep(until(send)) 
forward(packet) 

endif 
endwhile 

This figure shows pseudo-code for scheduling and dropping packets in ntr_delay. The 
quantities V&, V'r, F, and L are all from a network quality tuple, s e S. 

Figure 6.4: Delay Calculation 

NetBSD, and is defined by the following recurrence relation [56]: 

.rn+1 = (75.rn)    mod(231-l) (6.5) 

All packets contribute to the calculation of free, whether or not they are dropped. If the 
packet is to be dropped, the loop schedules the next available packet, else it sleeps until 
send, and then forwards the packet. 

Scheduling Granularity 

In our current implementation, the delay queue makes use of the clock-based interrupt in 
the NetBSD kernel. The resolution of that interrupt is only 10 milliseconds. To cope with 
this limited resolution, modulation makes the simplifying assumption that packet arrivals, 
and hence departures, are uniformly distributed between clock ticks. Hence, if each packet 
is scheduled on the closest clock tick, the long term average error should tend to zero. 

Because packets to be delayed less than half a clock tick are sent immediately, sparse 
traffic modeled over relatively high-performance links will not be sufficiently delayed. This 
simplifying assumption could be avoided in one of two ways. One approach would be to 
use a custom hardware clock, but this would preclude the ability to run modulation on 
stock machines. The other approach, which was rejected in the interests of minimal system 
perturbation, would be to raise the frequency of clock interrupts as described by Ahn et al 
[2]. 



6.3.  TRACE MODULATION 89 

Delay Compensation 

Modulation attempts to provide symmetric delay of inbound and outbound traffic; that is, 
for a fixed set of modulation parameters, inbound traffic should perform exactly the same as 
outbound traffic. However, because the unified delay queue is placed at the endpoint of the 
path, inbound and outbound delays are slightly asymmetric, as shown in Figure 6.5. In this 
figure, a synthetic trace roughly equivalent to that of a WaveLAN is used to modulate FTP 
transfers of varying sizes, both inbound and outbound. The uppermost, dashed curve in 
this figure shows the fetch FTP performance with this implementation; the solid fine shows 
the store FTP performance. Without modifications, inbound traffic has significantly lower 
throughput than outbound, an artifact of the asymmetric placement of the delay queue. An 
accurate realization of the network model would delay these two streams identically. 

To correct for this, modulation compensates for the additional delays on inbound traf- 
fic. To determine the amount of compensation, one must measure the physical network 
over which modulation will take place, using the tools described in Section 6.4. This mea- 
surement need occur only once; it is independent of the network to be emulated. The 
experimenter then must take the long-term average of the modulating network's bottleneck 
per-byte costs, H- This term is subtracted from the replay trace's bottleneck per-byte costs 
for modulation of inbound packets. 
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This figure depicts replay of a synthetic trace whose performance is close to that of a 
WaveLAN device, both with and without inbound traffic compensation. A perfect realiza- 
tion of the network model would result in identical performance for Fetch and Store. 

Figure 6.5: Effect of Delay Compensation 

The effectiveness of compensation is shown in Figure 6.5. Store throughput does not 
change. However, fetch throughput with compensation, shown by the dotted curve, is much 
closer to store, confirming the importance of compensation. 
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6.3.3   Trace Replay 

The modulation layer provides facilities to delay packets according to a single network 
quality tuple. However, to reproduce the reference waveforms of Figures 6.1 and 6.2, one 
must use a list of such tuples, S, that varies the behavior of the network over time. Such 
lists are called replay traces, and they are fed to the modulation layer by the replay tool. 

The replay tool consists of a user-level daemon and an in-kernel, circular buffer. The 
daemon feeds the tuples from a replay trace to the kernel, which supplies them to the mod- 
ulation layer, each in turn. When there are no records left to replay, the kernel forwards 
packets without modulation. The daemon may also abort a replay trace, even if there are 
unconsumed tuples in the kernel; these tuples are flushed, and packets are forwarded with- 
out delay from then on. 

The interface used by the daemon is guarded by a pseudo-device that acts as a sema- 
phore. Before using the replay interface, the daemon must open this device. The kernel 
ensures that only one such device can exist, and that only one process may hold the device 
open at any give time. When the daemon opens the pseudo-device, any old entries that 
might be present in the replay buffer are removed, and compensation parameters are set to 
zero. 

compensate 

seed 

rep lay- 

stop 

Establish compensation parameters. Can be used to 
compensate either the inbound or outbound side of 
any network quality parameter. Establishes fixed off- 
sets that are added to or subtracted from each appli- 
cable delay or loss calculation. 
Seed the random number generator used by the mod- 
ulation layer. 
Pass a list of network quality tuples to the in-kernel 
buffer; they will be appended to the buffer as space 
permits. Will block until there is enough space. 
Forcibly abort a replay, clearing all pending tuples. 

Figure 6.6: Trace Replay Interface 

After successfully opening the pseudo-device, the daemon may then make use of the 
replay interface, summarized in Figure 6.6. The daemon first performs the two initialization 
steps; it calls compensate to apply any compensation parameters specified on invocation, 
and calls seed to set the seed for the random number generator if one was requested. 

Once setup is complete, the daemon then reads tuples from a file and passes them to the 
kernel via replay. If the kernel has room for the records in its internal buffer, they are 
copied immediately. If the passed records would not fit in even an otherwise empty kernel 
buffer, the kernel returns E2BIG. In the intermediate case, the call to replay will block 
until there is room for all of the passed tuples to be copied. The daemon can feed the file to 
the kernel a single time, or it may loop over the file indefinitely. 
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If the daemon is interrupted, it calls stop to abort the replay that is in progress, and 
terminates. Alternatively, another program can also call stop. This causes the daemon's 
next call to replay to return with an error code, and thence to quit. 

6.4   Empirical Generation 

While synthetic traces are sufficient for carrying out impulse response studies, they do not 
produce results that are representative of real wireless networks. Unfortunately, in addi- 
tion to the complexity of performance, such networks do not provide the repeatable results 
necessary for evaluation of or comparison between mobile systems. Thus, to improve the 
utility of trace modulation, it was extended with facilities to repeatably recreate the perfor- 
mance of a real wireless network. 

To provide this facility, an experimenter collects empirical traces of some path through 
an existing wireless infrastructure. When replayed through the modulation layer, this trace 
yields performance faithful to that observed during collection, but is much more repro- 
ducible. The generation of empirical traces takes place in two phases. In the first phase, 
collection, the experimenter traverses a real wireless infrastructure with an instrumented 
laptop. This laptop generates a known workload, and records the performance ofthat work- 
load. In the second phase, distillation, the experimenter transforms the raw collected trace 
into a replay trace. Sections 6.4.1 and 6.4.2 describe collection and distillation, respec- 
tively. 

6.4.1    Collection 

During trace collection, an experimenter carries a portable computer, typically a laptop, 
along some path of interest through a wireless infrastructure. During this traversal, the lap- 
top generates a particular, known workload. The performance of that workload is observed 
and recorded by the collection tool, which is a combination of an in-kernel trace collection 
buffer and a user-level program which extracts this collected trace. 

Trace Collection and Extraction 

A laptop used for trace collection has an instrumented protocol stack that records informa- 
tion about each incoming and outgoing packet; the recorded information is gathered into a 
fixed-sized, circular buffer called the trace buffer. This in-kernel trace collection is similar 
to other network data collection platforms [33, 45], in that it provides accurate timing of 
network events with modest overheads. 

Hooks are placed in the input and output routines of traced devices to allow the tracing 
software access to packets. If tracing is enabled, the packet tracing routine examines the 
media header and encapsulated packet to ensure that the packet is one of the traced types. 
It then copies relevant information from the packet into the trace buffer. Periodically, the 
kernel examines the device performance parameters and places that information into the 
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buffer as well. Since the kernel buffer is limited in size, it may be overrun. In that case, the 
collection tool is careful to keep track of the number and type of lost records. 

Packet, device, and lost record information is collected in a trace format defined else- 
where [52]; the details are beyond the scope of this document. The format is designed for 
flexibility and extensibility, but is fully self-descriptive. 

Collection is controlled by a user-level daemon, which interacts with the kernel buffer 
through a pseudo-device, for which the kernel supports open, close, and read opera- 
tions. When the daemon opens the pseudo-device, it enables tracing as a side effect. As 
with the replay pseudo-device, only one such collection device can exist, and only one 
process may have that device open at any time. The daemon then reads records from the 
kernel's buffer; a call to read will block until there are records available. When the dae- 
mon is finished collecting data, it calls close for the pseudo-device, which turns off trace 
collection and flushes any uncollected records. 

Known Workload 

In order to obtain observations that can be distilled to a list of model parameters, the col- 
lection host must generate and record the performance of some known workload. Because 
clock drift on laptops can be significant relative to the time scale of network quality varia- 
tion, the workload is constrained to use a strategy that depends only on timestamps taken 
from a single host. This implies that the workload must consist of round-trips, and that em- 
pirical trace collection must assume that network delays are symmetric. These assumptions 
could be removed if trace collection hosts were equipped with high-resolution, low-drift, 
synchronized clocks. 

The known workload is a modified version of the ping utility, consisting of ICMP 
ECHO and ECHOREPLY packets. The modified ping sends out a group of three packets 
each second, in two stages. In the first stage, ping sends an ECHO request with a small 
data payload of size si to a target host. When the corresponding ECHOREPLY is received, 
ping begins the second stage by sending two larger ECHO requests of size s2, back-to- 
back, to the same target host. If the first response is never received, the second and third 
ECHO packets are never sent; instead, the cycle begins anew. 

The trace format for ECHO packets records the sequence number, the id field — the 
process identifier of the process that generated the ECHO — as well as the time at which 
the packet was generated. For ECHOREPLY packets, the kernel again collects the id field. 
It also records the round-trip time, obtained by subtracting the time the ECHOREPLY was 
received from the time stored in the packet's payload. Since all timestamps are provided 
by a single host, synchronized clocks are not needed. 

The trace format supports measurements from a variety of network devices. This al- 
lows post-processing tools to correlate device and network performance. However, only 
the AT&T WaveLAN packet radio device was available to the author at the time of this 
writing. This device operates in the 900MHz region, and offers a nominal bandwidth of 2 
Mb/s. The static infrastructure for our WaveLAN network, Wireless Andrew [10], consists 
of a collection of base stations called WavePoints that serve as bridges to an Ethernet. A 
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roaming protocol triggers handoffs between WavePoints as a WaveLAN host moves. The 
WaveLAN device reports signal characteristics such as signal level, signal quality and si- 
lence level, which we record in the collected trace along with packet traffic. 

6.4.2   Distillation 

Once the raw observations of the modified ping workload have been collected, they are 
distilled by an off-line algorithm that converts these observations to a replay trace. The cen- 
tral idea is to take each group, called a triple, of three ECHO and ECHOREPLY pairs, and 
from those three observations derive the three delay parameters, F,Vb, and Vr. A sliding 
window passes over the raw observations and generates network quality tuples by averag- 
ing the delay observations from each triple in the window, and counting the percentage of 
lost packets within the window. 

Delay The production of the estimate of instantaneous network delay from one triple 
requires two steps. The first step is determining the end-to-end latency, F, and the total 
per-byte costs, V. The second step involves discovering the relative proportions of V& and 
Vr. 

The first packet takes some time ti for its round-trip, the second some longer time t2. 
Since their round-trips were entirely non-overlapping, we know the second packet incurred 
no queueing delay due to the first packet. For these packets, each taking a round trip, the 
network model says that: 

h = 2(F + SlV) (6.6) 
t2 = 2(F + s2V) (6.7) 

From these equations we can determine F and V. 
The second and third packets each have size s2, but the second takes time t2, and the 

third t3, where t3 > t2. Since they were sent back-to-back, the third packet is subject to 
queueing delay behind the second. Hence the model says that: 

t2 = 2(F + s2(Vb + Vr)) (6.8) 

h = 2(F + s2(Vb + Vr))   +   s2Vh (6.9) 

That is, that the third packet is delayed behind the second at the bottleneck queue, and that 
delay is exactly s2Vb. Note that the bottleneck cost is paid only on the outbound leg; on 
the inbound leg, the third packet is already delayed far enough behind the second to get 
through the bottleneck queue without extra delay. These two equations, together with the 
first two, yield one set of F, V&, Vr estimates. The packets of a triple and their associated 
elapsed times are shown in Figure 6.7 

Occasionally, solving Equations 6.6-6.9 for a single group of packets results in a neg- 
ative value for one or more of the parameters F, Vb, Vr. Such values arise when some 
packets in the group experienced substantially different networking conditions from the 
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= small 

s2Vb 

This figure depicts one triple as sent by the modified ping workload. The instrumented 
host is the dotted line on the left, the target host the dotted line on the right; time moves 
forward down the figure. There are three ECHO requests and ECHOREPLY responses. 
Each one of the former immediately elicits one of the latter from the target host. The 
first and second round trips are completely non-interfering, and thus are independent. The 
third round trip, however, experiences queuing delay behind the first; in the networking 
model, this queueing delay is equal to s2\■%. 

Figure 6.7: One Workload Triple 

others. In such situations, the distillation algorithm plugs in the immediately preceding 
observed parameters, and takes the difference between the expected and observed times. 
This difference is applied to F, reusing the previous It and Vr; the reasoning for this is that 
short-term performance variation is most likely due to media access delay. The algorithm 
is careful not to let this corrective factor cascade through successive observations. 

A sliding-window algorithm converts these estimates into components of an element of 
V, a delay tuple. Each step produces an average of the n observations of each parameter F, 
Vb, and Vr in the current window. The choice of window width, five seconds, balances the 
desire to discount outlying estimates with the need to be reactive to true change in network 
conditions. 

Loss To estimate the loss rate, L, the algorithm examines sequence numbers of the ECHO- 
REPLY packets in and immediately surrounding the current window. This reveals, for the 
time from the last packet before the window to the first packet after the window, how many 
ECHOREPLY packets were expected but failed to arrive. 

A very simple example of this is illustrated in Figure 6.8. The last packet that arrived 
before the window is packet number 4, the first packet that arrived after the window is 
packet number 9. There are four packets between 4 and 9, only two arrived; therefore two 
were lost.  The algorithm assumes that a run of lost packets would have arrived evenly 
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distributed through time. So, in our example, only one of the two lost packets, number 
6, would have arrived within the window. So, for the current window, we received two 
ECHOREPLY packets, but expected to receive three. 

8 

This figure illustrates an example loss calculation. Each box contains an ECHOREPLY 
with a label equal to the sequence number of the packet. In this example, two packets were 
lost between packets 4 and 7 — packets 5 and 6 — but only one of them, packet number 6, 
was expected within the window. Therefore, for this window, three ECHOREPLY packets 
were expected but only two were seen. 

Figure 6.8: Fraction of Packets Lost in a Window 

In general, for each window it is known that the instrumented host received b ECHORE- 
PLY packets, but expected to receive a. Let P = 1 - L be the unknown probability that 
a packet sent arrives without being dropped. Thus, a ECHO packets were sent, of which 
Pa arrived at the target host. For each of those Pa packets, the target host responds with 
an ECHOREPLY, of which P2a arrive back at the original sender. But, since the sender 
received b ECHOREPLY packets: 

b = P2a (6.10) 

L = l-y/b/a~ (6.11) 

Combining L and V, the distillation algorithm obtains a network quality tuple, which 
is an element of S. The algorithm to produce the entire list runs in the order of the length 
of the trace, and comprises a single pass. 

As an aside, no clocks are used in calculating L, so in fact one could dispense with 
the symmetry assumption for loss information. However, to simplify the implementation, 
empirical trace collection preserves the more restrictive assumption of symmetry already 
needed for calculating delay parameters. While the WaveLAN exhibits slightly asymmetric 
loss rates, the assumption of symmetry does not significantly affect the accuracy with which 
empirical traces capture the performance of real wireless networks. 

6.5   Validation 

The goal of empirical trace modulation is to subject a system to a networking environment 
indistinguishable from the one on which the trace was collected. To gauge its success, a 
set of three diverse benchmarks, described in Section 6.5.1 were run over four live wire- 
less scenarios, described in Section 6.5.2. Then, empirical traces were collected for each 
scenario, and the benchmarks were run over a network modulated by those traces. The 
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benchmark performance over live and modulated networks is compared in Section 6.5.3 to 
see how faithfully the latter reproduced the former. 

6.5.1 Benchmarks 

The first benchmark involves a World Wide-Web browsing workload [74]. In this bench- 
mark, Web reference traces of five users performing search tasks are replayed as fast as 
possible on a modified Mosaic v2.6 browser. To ensure good experimental control, all ob- 
jects referenced in these traces are first copied to a private Web server, and all URLs in 
the Web traces are then changed to refer to this server. This benchmark generates a mod- 
erate amount of traffic, and uses TCP as its underlying transport mechanism. The objects 
transferred by the benchmark are typically small. 

The second benchmark is FTP. This benchmark transfers a single 10MB file disk-to- 
disk, both to and from a laptop. It makes heavy use of the wireless network, and also 
uses TCP as its underlying transport protocol. It is designed to highlight any potential 
asymmetry in network performance, especially important given the assumption of network 
symmetry forced by the lack of synchronized clocks during trace collection, as discussed 
in Section 6.4.1. 

The third benchmark is the Andrew Benchmark [28] run on NFS [64], a commonly- 
used network file system. Since NFS was not designed for a mobile environment, it makes 
no special attempt to defer or eliminate traffic on networks of low quality. The NFS cache 
is flushed before each trial of the experiment. 

The input to the Andrew Benchmark is a tree of about 70 source files occupying about 
200KB. There are five distinct phases in the benchmark: MakeDir, Copy, ScanDir, Read All, 
and Make. The benchmark is run over files stored in NFS. Roughly, there are two classes 
of NFS operations: status checks and data exchanges. The former are typically very small 
messages, while the latter are larger. For most NFS clients, the ScanDir and ReadAll phases 
operate on warm caches, and transmit only status-check messages. All NFS messages are 
sent over UDP. 

6.5.2 Mobile Scenarios 

The four scenarios we have chosen for evaluation are all from Carnegie Mellon University, 
and were chosen to cover a wide range of user behavior and network quality. Figures 6.9- 
6.12 present key network characteristics of these scenarios. 

All scenarios use the WaveLAN wireless network exclusively. This is an especially 
stressful test case for empirical modulation because WaveLAN is a fast medium and packet 
delays are short. The accuracy of emulation, therefore, is likely to be particularly sensitive 
to limitations of the model and shortcomings in the implementation. 

The top left component of each figure depicts the observed signal level in WaveLAN- 
specific units. Higher levels indicate stronger signals; levels below 5 are assumed to be 
background noise by the WaveLAN driver.  The other three components of each figure 
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depict quantities derived from the distilled traces: latency in milliseconds, bandwidth in 
Kbits per second, and loss rate in percent. To account for temporal variation, four trials 
were obtained of each scenario. Each graph combines the observations from all four trials. 

In Figures 6.9 through 6.11, the X axis represents location, with labels indicating check- 
points along the path followed during collection. Although every effort was made to keep 
physical speed identical across trials of a scenario, perfect consistency is impossible. To 
account for this, inter-checkpoint intervals are normalized to be of the same length across 
different trials of a given scenario; these lengths roughly correspond to the proportion of 
time that interval took with respect to the entire trace. At each X value, the vertical line 
represents the range of observed parameter values at that location across different trials. 
For example, at location x4 in the first graph of Figure 6.9, the minimum observed signal 
level was 17 and the maximum was 22. 

Since the fourth scenario does not involve motion, it is meaningless to attempt to corre- 
late parameter values with locations. Hence Figure 6.12 depicts the occurrence of observed 
values as histograms. 

Porter: Inter-Building Travel 

The Porter trace, depicted in Figure 6.9, begins in the main lobby of Wean Hall (location 
xO in the graphs), then traverses an outdoor patio to Porter Hall (xl-x3), and finally enters 
and traverses Porter Hall (x4-x6). 

Signal level is highly variable initially, but steadily improves as the Wean-Porter patio 
is crossed. It falls off again as Porter Hall is traversed. Close to location x5 in Porter Hall, 
signal level again becomes highly variable. The latency graph indicates several spikes as 
high as 100 milliseconds, but typically hovers between 1.5 and 10 milliseconds. The band- 
width graph shows typical rates between 1.4Mb/s and 1.6Mb/s, but also indicates spikes as 
low as 900Kb/s. Loss rates are typically below 10%, the worst cases being the early portion 
of the Wean-Porter patio, and the end of Porter Hall. 
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This figure shows observed signal quality and derived model parameters for the Porter 
scenario. At each X value, the vertical line gives the range of observations at that location 
across trials. Note the log scale for latency. 

Figure 6.9: Porter Scenario 
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Flagstaff: Outdoor Travel 
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This figure shows observed signal quality and derived model parameters for the Flagstaff 
scenario. At each X value, the vertical line gives the range of observations at that location 
across trials. Note the log scale for latency. 

Figure 6.10: Flagstaff Scenario 

Flagstaff, the next scenario, is depicted in Figure 6.10. The path for this scenario leaves 
Porter Hall (yO-yl) to walk along the back edge of the campus in Schenley Park (yl-y5), 
then around Flagstaff Hill (y5-y9). The entire trace takes place outdoors, but at all times 
remains in the line of sight of buildings housing WavePoint base stations. 

Overall, signal quality during the Flagstaff traces is somewhat below that of the Porter 
traces. It starts off highly variable, then falls off sharply as soon as Schenley Park is entered, 
and stays roughly constant at a low level thereafter. On the whole, latency is much better in 
Flagstaff than in Porter. Average bandwidth is somewhat better in the Flagstaff traces than 
Porter. Where the Flagstaff traces are significantly worse than the Porter traces is in loss 
rate, particularly later in the traversal. 
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Wean: Traveling to a Classroom 

The next scenario is traveling from a graduate student office to a classroom, all within 
Wean Hall. This trace, depicted in Figure 6.11, is called the Wean trace. The trace begins 
in an office with known poor connectivity (zO), then traverses a hallway to the building's 
elevator (z0-z3). After a wait for the elevator (z3-z4), the traversal enters and rides it 
three floors (z4-z5). It then exits the elevator and walks to the classroom (z5-z7). Since 
this scenario involves discontinuous motion, the graphs in this figure are broken into four 
regions: the walk to the elevator, the wait for the elevator, riding the elevator, and the walk 
to the classroom. 
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This figure shows observed signal quality and derived model parameters for the Wean 
scenario. At each X value, the vertical line gives the range of observations at that location 
across trials. Note the log scale for latency. 

Figure 6.11: Wean Scenario 

Signal level is variable, but acceptable for the entire walk to the elevator. While waiting, 
signal level is quite good, but on the elevator ride it drops precipitously. On exiting the 
elevator, signal level is again good during the walk to the classroom. Latency is good 
except during the elevator ride, peaking at 350 milliseconds. Bandwidth is somewhat lower 
than that found in the Porter traces. Loss rates are low except for the duration of the elevator 
ride, where they are atrocious. 
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Chatterbox: Busy Conference Room 
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This figure shows observed signal quality and derived model parameters for the Chatter- 
box scenario. Unlike previous scenarios, there is no physical movement. Thus, all graphs 
depict distributions of observed values. Note the log scale for loss rate. 

Figure 6.12: Chatterbox Scenario 

The final scenario is intended to capture the effect of interfering wireless traffic rather than 
physical motion. The trace collection host is placed in a room with five other laptops also 
using WaveLAN. Each of the other laptops continuously executes a workload produced by 
SynRGen [20], a synthetic file reference generator. The synthetic workload models a user 
in a edit-debug cycle on files stored on a remote NFS file server. 

This scenario, called Chatterbox, is depicted in Figure 6.12. This figure differs from 
the depictions of the previous three scenarios because there is no physical motion. It uses 
simple histograms rather than a plot of parameter values along a sequence of checkpoint 
locations. The difference in depiction limits one to coarse comparisons to the previous 
scenarios. 

Figure 6.12 shows that signal level is consistently high, typically around 18. In spite of 
high signal level, the presence of interfering traffic results in poorer latency and bandwidth 
relative to previous scenarios. Loss rates are reasonable. 
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6.5.3   Results 

Trace collection and benchmarking were performed on an IBM ThinkPad 701c laptop with 
an Intel 80486 75MHz DX4 processor and 24MB of memory. The laptop used a WaveLAN 
radio modem, and relied on an infrastructure of several dozen WavePoint base stations to 
provide service to the mobile host through a single IP router. The laptop communicated 
with an Intel Pentium 90MHz workstation with 32MB of memory connected to the campus 
network via Ethernet. For modulation experiments, these same machines were connected 
with an isolated Ethernet. Both machines ran NetBSD version 1.2, customized for trace 
collection and modulation. In the experiments, only the ThinkPad performed collection or 
modulation. 

Each benchmark, on each scenario, was measured over four live trials. Concurrently, 
four traces of each scenario were collected, interleaving trials with trace collection. These 
collected traces were then distilled for use in modulation; one trial of the benchmark was 
run over each of these distilled traces. Modulation is considered to have faithfully repro- 
duced the live scenario if the differences of the means of modulated and live benchmarks 
are within the sums of their standard deviations. 

As one might expect, two trials of the same benchmark over the same distilled trace 
show little variance. When the same benchmark is run over distinct distilled traces intended 
to duplicate the same path, however, the results can show significant variance. 

World Wide Web Benchmark 

Figure 6.13 presents the results from the World Wide Web benchmark. In all scenarios, the 
difference between the means of real and modulated elapsed times is less than the sum of 
their standard deviations. This indicates that trace modulation is accurate within the bounds 
of experimental error for these scenarios. 

Scenario Real (s) Modulated (s) 
Wean 
Porter 
Flagstaff 
Chatterbox 

161.47    (7.82) 
159.83   (5.07) 
157.82   (6.58) 
169.07  (17.63) 

160.04    (2.60) 
150.65     (5.83) 
148.64    (9.61) 
157.62  (10.18) 

Ethernet 140.30   (3.07) —       — 

This table gives the mean elapsed time in seconds of four trials of the World Wide Web 
benchmark for each mobile scenario. For reference, the last row gives the performance 
of the benchmark over the Ethernet used for modulation. Figures in parentheses are stan- 
dard deviations. Note that due to a problem with our experimental setup, the real Porter 
numbers come from only three trials rather than four. 

Figure 6.13: Elapsed Times for World Wide Web Benchmark 
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FTP Benchmark 

The FTP benchmark is important for two reasons. First, it is network-limited, and therefore 
most sensitive to network performance. Second, since send and receive performance are 
largely independent, it allows exploration of the impact of the network symmetry assump- 
tion forced by the lack of synchronized clocks during trace collection. 

Figure 6.14 presents the results for FTP. In the Wean and Chatterbox scenarios, real 
and modulated performance are comparable: the difference between the means is less than 
the sum of their standard deviations. While this is not true of the Flagstaff scenario, the 
real send and receive performance differ by more than 20 seconds. Both modulated send 
and receive performance are very close to the mean of real send and receive, and hence an 
accurate recapturing of the traced environment given the symmetry limitation. The Porter 
scenario is the only troubling one, not sufficiently delaying either send or receive traffic. 
Modulated send performance is off by 1.05 times the sum of the standard deviations; receive 
is off by 1.56 times. 

The substantial difference between send and receive performance over the real Wave- 
LAN in these scenarios indicates that network performance is in fact asymmetric.2 This 
contradicts the modeling assumption of symmetry stated in Section 6.4.1, and further em- 
phasizes the need for synchronized clocks during trace collection; such clocks would allow 
us to trace one-way performance. Also of note is the large standard deviation in the Chat- 
terbox scenario. This high variance is shown in almost all of the real and modulated results 
over that scenario. 

Andrew Benchmark on NFS 

Figure 6.15 presents the elapsed times for each phase of the Andrew Benchmark under 
real and modulated network conditions, as well as the total times for the benchmark. In 
three of the four scenarios — Wean, Porter, and Chatterbox — the difference between the 
means of real and modulated total times is within the sum of their standard deviations. In 
two of those three, Porter and Chatterbox, this is also true of all individual phases of the 
benchmark. 

In the Wean trace, the ScanDir and ReadAll phases are both under-delayed in modula- 
tion. This likely is due to the inability to schedule modulation delays at granularities shorter 
than 10 milliseconds. Many of the short, infrequent messages exchanged during those two 
phases do not have calculated delays large enough to be acted upon. 

The Flagstaff scenario, where real and modulated performance diverge the most, most 
likely also suffers from this phenomenon. As shown in Figures 6.9 through 6.12, Flagstaff 
latency and bandwidth tend to be comparable to or better than those of the other three 

2This asymmetry arises from a difference between the client's implementation of the WaveLAN media 
access protocol from that of the cell server. In the WaveLAN, a node that is to send a pakcet must first listen 
for another transmitter. If some other transmitter is currently active, the node must back off and try again. 
The client's back-off counter has fewer bits than the cell's, but the total back-off times of the two kinds of 
nodes are comparable. Thus, the client backs off in fewer, larger steps, favoring the cell in transmission. 
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Scenario Real (s) Modulated (s) 

Wean 
send 
recv 

79.88 (10.88) 
64.93   (0.93) 

72.65 (3.33) 
67.83    (2.34) 

Porter 
send 
recv 

86.38   (4.94) 
82.23   (1.92) 

76.65 (4.29) 
72.95   (4.oi) 

Flagstaff 
send 
recv 

88.15   (1.60) 
61.85   (1.12) 

74.88   (2.97) 
70.80    (3.36) 

Chatterbox 
send 

recv 
116.83  (30.49) 
96.83 (42.15) 

92.13 (20.13) 
87.28 (17.18) 

Ethernet 
send 
recv 

20.50   (0.08) 
18.83   (0.17) 

— 

This table gives the mean elapsed times in seconds of four trials of the FTP benchmark. 
Send and receive performance are reported separately. For reference, the final row gives 
benchmark performance over the Ethernet used for modulation. Numbers in parentheses 
are standard deviations. 

Figure 6.14: Elapsed Times for FTP Benchmark 

scenarios. Thus, many of the shorter NFS messages that are present in the benchmark will 
have delays below the threshold. 

Discussion 

The three experiments have a broad range of traffic: medium to heave loads, using both 
short and long messages over both unreliable and reliable transport protocols. While em- 
pirical modulation is not perfect in reproducing wireless behavior for these applications, 
the results are quite good; it is inaccurate in only two of the twelve possible combinations 
of scenarios and benchmarks. This despite a very simple model capable of expressing only 
symmetric performance; something that isn't true in the case of the WaveLAN. Overall, 
empirical modulation provides a solid base upon which to evaluate and compare systems. 

6.6   Summary 

Wireless networks are too complex to carry out clear analyses of complex systems using 
them. The inability to easily understand such a system forces one to use techniques other 
than fully live experiments to evaluate systems such as Odyssey. 

The key technique used in evaluating Odyssey, impulse response analysis, is borrowed 
from the field of control systems theory. In this technique, the system is subjected to simple, 
sharp changes in network bandwidth, called reference waveforms; its reaction to these 
waveforms can then be analyzed. The simplicity of the waveforms makes this analysis 
tractable; since quickly adapting to change is the focus of Odyssey, the sharp variations 
lead to an attractive test case. 
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Scenario MakeDir (s) Copy (s) ScanDir (s) ReadAll (s) Make (s) Total (s) 

Wean 
Real 

Mod. 
3.00 
2.50 

(0.00) 

(1.00) 

18.00   (0.82) 

19.25   (3.69) 

13.50   (0.58) 

10.00   (1.83) 

23.00 (0.82) 

19.00   (0.82) 

105.50   (3.87) 

112.00   (4.97) 

163.00 (4.40) 

162.75 (4.86) 

Porter 
Real 

Mod. 
3.00 
2.50 

(0.00) 

(1.00) 

20.00 (i.4i) 

16.75   (3.86) 

18.50   (4.65) 

12.00   (4.24) 

23.50 (i.29) 

20.25   (2.87) 

104.50 (1.29) 

99.50 (4.20) 

169.50   (5.45) 

151.00(14.09) 

Flagstaff 
Real 

Mod. 
2.75 
2.75 

(0.50) 

(0.50) 

19.25 (0.50) 

15.00   (2.71) 

15.25 (1.26) 

10.75   (3.59) 

28.00 (i.83) 

20.00   (283) 

111.75   (2.99) 

97.25 (4.92) 

177.00   (4.69) 

145.75 (5.91) 

Chatterbox 
Real 

Mod. 
3.50 
4.00 

(1.00) 

(0.82) 

22.50   (5.69) 

30.75 (19.43) 

18.25   (3.96) 

21.00(18.92) 

27.25 (6.55) 

30.00(12.44) 

109.25 (n.18) 

117.00(20.61) 

180.75 (27.61) 

202.75 (50.79) 
Ethernet Real 2.25 (0.50) 12.50   (0.58) 7.75 (0.50) 17.50   (0.58) 84.00 (i.4i) 124.00 (i.63) 

This table gives the per-phase mean elapsed times in seconds, and the total benchmark 
time, of four trials of the Andrew Benchmark under real and modulated network condi- 
tions. For reference, the final row gives benchmark performance over the Ethernet used 
for modulation. Standard deviations are given in parentheses. 

Figure 6.15: Elapsed Times for Andrew Benchmark Phases 

In order to reproduce these simple, sharp changes in bandwidth with good experimental 
control, the evaluation makes use of trace modulation. Trace modulation emulates some 
desired network performance in an otherwise entirely live system; this emulation is driven 
by a trace, a list of parameters to a simple network model. Traces may be generated entirely 
synthetically to match any desired network performance; the only limit is the quality of the 
underlying network. This technique is used to generate the reference waveforms to which 
Odyssey and its applications will be subjected. 

While Odyssey's evaluation focuses on impulse response analysis, one might wish to 
evaluate a system in the context of more realistic network performance. Unfortunately, 
wireless networks, in addition to having performance that is complex to describe, do not 
provide reproducible performance. Such reproducibility is critical in evaluating and com- 
paring systems. 

To address this, one can generate modulation traces empirically. An experimenter tra- 
verses some area of wireless network coverage, carrying an instrumented laptop that col- 
lects observations of the performance of a particular, known network workload. The ob- 
servations are then distilled into a form suitable for trace modulation. A set of benchmarks 
shows that the resulting trace faithfully reproduces the original, measured environment. 
This despite the fact that the benchmarks exhibit a wide range of network traffic — all 
quite different than the workload from which model parameters are derived. 
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Chapter 7 

Evaluation 

The evaluation of the Odyssey prototype and applications was driven by three central ques- 
tions: 

• What are the limits on agility imposed by the system-level components of Odyssey? 
• Are adaptive strategies effective in reducing the impact of large variations in band- 

width. 
• Does centralized resource management allow multiple, concurrent applications to 

make better adaptive decisions than per-application approaches? 

These questions were chosen to understand the architectural limitations of Odyssey, and 
the nature of application-aware adaptation. This chapter begins with an overview of these 
questions and the strategies used to answer them. The experimental conditions are given in 
Section 7.1, and the experiments are presented in Sections 7.2-7.4. 

Agility is an end-to-end property, measuring the time required for a mobile client to 
notice and react to some salient change in its environment. Both the application and the 
system place limits on the agility of a client; a sluggish component anywhere in the adaptive 
chain renders the whole system unresponsive. The system-limited components of this chain 
are of particular interest, as they place the upper bound on agility for all applications. There 
are four system-limited components to agility: placing a resource request with the system, 
detecting a change in that resource, notifying the application ofthat change, and requesting 
a type-specific operation to change fidelity. These costs, described in turn in Section 7.2, 
are dominated by the detection of bandwidth changes; this takes on the order of a few 
seconds. 

Next, Section 7.3 asks how effective adaptive strategies are in coping with changes in 
bandwidth. To do so, each application is extended to support a number of static strategies 
in addition to its adaptive one. Each strategy is subjected to the reference waveforms in 
Figure 6.1, and the resulting performance and fidelity is compared with that of the other 
strategies. When the waveform is one in which an adaptive strategy could benefit, it does; 
otherwise, the adaptive strategy mimics the correct static one. 

Finally, Section 7.4 explores the importance of the single point of resource control in 
support of concurrent applications.  To do so, Odyssey's centralized bandwidth estima- 

107 
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tion is compared to two alternative forms of estimation. Several experiments are run with 
concurrent applications making use of these estimation mechanisms over a variety of envi- 
ronments. In each of these, comparing the resulting performance and fidelity demonstrates 
clearly that centralized resource management is critical in providing applications with the 
information they need to make good adaptive decisions. 

7.1   Experimental Conditions 

All experiments used the same hardware and software configuration, shown in Figure 7.1: 
a single 90 MHz Pentium client with 32 MB of memory, and a collection of 200 MHz Pen- 
tium Pro servers with 64 MB of memory. The client ran a NetBSD 1.2 kernel customized 
to include Odyssey and trace modulation extensions. For simplicity, this software base was 
used on the servers as well, though trace modulation was performed only on the client. 

Client 
90MHz 
Pentium 

Video Server 
Bitstream #1 
200MHz 
Pentium Pro 

Distillation 
Server 
200 MHz 
Pentium Pro 

Speech Server 
Bitstream #2 
200 MHz 
Pentium Pro 

Web Server 
200 MHz 
Pentium Pro 

Figure 7.1: Experimental Set Up 

For context, Figure 7.2 gives elapsed times for various micro-benchmarks on both client 
and server machines. Times for null a procedure call and get t imeof day were obtained 
by timing a million iterations of each, and dividing. Signal delivery time was obtained by 
running two programs that used signals to pass control to one another. The elapsed time of 
two hundred thousand such control exchanges was measured. This elapsed time includes 
one extra system call — the call to sigpause to await the next exchange of control — 
but the other costs, such as the time for a context switch, are incurred during the delivery of 
any signal. Intra-machine RPC time was obtained by measuring ten thousand calls between 
a client and server on the same machine; inter-machine time was measured from the client 
to one of the servers. The relatively long RPC time is a result of our untuned, user-level 
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mechanism. The inter-machine RPC time is slightly lower than that for intra-machine RPC 
because the server CPU is substantially more powerful than that of the client, and this more 
than compensates for additional network delays. 

Benchmark Client     Server 
Null Procedure Call 125 ns       42 ns 
gettimeofday 12.8 fis    7.01 /is 
Signal Delivery 61.1/is    25.6 fis 
Null RPC, intra-machine 1.26 ms    492 /is 
Null RPC, inter-machine 1.20 ms          — 

Figure 7.2: Measured Times of Basic Primitives 

The client can run any of the sample applications, as well as a synthetic application 
called bitstream. Each server plays only a single role in any given experiment. These roles 
are labeled in Figure 7.1. The connections in Figure 7.1 are logical; all hosts in the testbed 
are connected to the same Ethernet segment. 

All experiments use either the reference waveforms of Figures 6.1 and 6.2, or — in 
the case of variations in network demand — a constant supply. The bandwidth levels 
used by the reference waveforms were chosen with two constraints in mind. First, they 
must be reasonably achieved on current wireless hardware. Second, they must provide 
for interesting tradeoffs when running the sample applications. The traces use 120 KB/s 
(kilobytes per second) and 40 KB/s for the high and low bandwidth levels. The protocol 
round trip time measured on the setup in Figure 7.1 was 21 ms for both bandwidths. The 
short waveforms of Figure 6.1 are one minute long, with the step occurring at the midpoint, 
and the impulses centered at the midpoint with a width of two seconds. The long waveform, 
in Figure 6.2 is fifteen minutes long. 

Many experiments involve measurements relative to events in a reference waveform; it 
is important to synchronize points in a waveform trace with measurements taken in vari- 
ous processes. For example, when running an experiment with the Step-Up waveform of 
Figure 6.1(c), one might need to classify events in the viceroy, wardens, or applications as 
being either before or after the transition. 

To cope with this difficulty, trace modulation was extended to use the upcall facility 
described in Section 3.3.5. Individual records in a modulation trace can be marked. There 
are three types of marks; start, timestamp, and end. When the modulation layer consumes 
such marked records, it generates an upcall in the trace modulation upclass as a side effect. 
Start and timestamp records are considered to be consumed when they begin; end records 
are considered to be consumed when they complete. Each of these upcalls carries with it 
the time at which the record was consumed, and the model parameters contained in that 
record. The viceroy registers for these upcalls, and when it receives one collects summary 
data from each warden. 
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7.2   Agility 

The adaptive decision loop for an application, shown in Figure 7.3, determines the agility 
of that application; the amount of time taken to pass through that loop defines the most 
turbulent environment in which an application can operate. There are four components of 
this decision loop limited by Odyssey itself: the cost of placing a resource request, the 
agility in estimating resource availability, the cost of notifying an application of changes in 
that availability, and the time to invoke a type-specific operation and return its results. 

application 
limited 

system 
limited 

i 
Place Request 

I 
Detect Change 

I 

warden 
limited 

This figure illustrates the decision loop of an adaptive application; the time it takes to 
traverse this loop defines the agility of any given application. The two shaded boxes 
represent steps limited by the agility of the application or the warden; the rest are system- 
limited steps, where the system includes the runtime library, kernel, and viceroy. 

Figure 7.3: Adaptive Decision Loop 

These components together place an upper bound on the agility of the system as a 
whole. An application that can immediately pick an appropriate fidelity level, using data 
from a warden that can effect fidelity changes without delay, is still limited by the remain- 
der of the system. This section measures the agility of each of these four system-limited 
components. 

7.2.1   Resource Requests 

The cost of placing a request is a small component of the overall decision loop. The user- 
level library must record the address of the request handler in a data structure, and forward 
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the request through the kernel to the viceroy, which places it on a resource request list. 
To measure this cost, the viceroy was extended with one hundred test resources; this 

enables measurement overhead to be amortized across many requests without having them 
interfere with one another. A synthetic application then measures the total time it takes 
to place a request on each of these resources; division yields the time per request. The 
same was done to measure the cost of request cancellation. Taken over five trials, the time 
required to place one request was, on average, 768 fis, with a standard deviation of 30 fis. 
The time to cancel a request is slightly shorter: 671 /is, with a standard deviation of 24 y«s. 
These times compare favorably with the intra-machine, null RPC time of 1.26 ms. 

7.2.2   Bandwidth Estimation 

In order to allow applications to make intelligent trade-offs between performance and qual- 
ity, the viceroy must accurately track changes in both the supply of and demand for network 
bandwidth. This estimation, described in Section 4.5.2, is purely passive, and relies on ob- 
servations of application traffic. From these observations, the viceroy estimates how much 
bandwidth is available to the machine in total — the supply of bandwidth — and then esti- 
mates the portion of that total that will be available to each active connection — the demand 
for bandwidth. Since the mechanisms to detect supply and demand are different, they must 
be measured independently. 

The agility of bandwidth estimation is dependent upon the network demands of running 
applications; this is because estimation is purely passive. An application making heavy use 
of the network will have more accurate estimates than one that rarely uses the network. 
Since the goal of this section is to estimate the limits imposed by Odyssey, these experi- 
ments are carried out with a synthetic application, warden, and server, called bitstream. 

The bitstream application reads bytes from some object at some rate from the bitstream 
server; this server generates an infinite stream of data for reading. The bitstream warden 
prefetches data on behalf of the application in chunks of 64 KB. There are two modes 
in which the bitstream application can operate. In the first, it fetches data as fast as it 
possibly can; since it is constantly fetching data over the network, there are always current 
observations in the RPC2 logs on which the viceroy can base its estimations. In the second, 
the application can rate-control its consumption, lowering the load it offers to the network. 

Varying Supply 

To measure the viceroy's agility in detecting variations in supply, a single bitstream was run 
at full-rate, subject to each of the reference waveforms in Figure 6.1. There were five trials 
taken for each waveform. To ensure that the system was in steady state at the beginning of 
each waveform, each trial was primed for thirty seconds prior to observation. 

The bandwidth estimated by Odyssey for the Step-Up and Step-Down waveforms is 
shown in Figure 7.4, that for Impulse-Up and Impulse-Down is shown in Figure 7.5. Each 
graph depicts the waveform, as well as all estimates made by the viceroy. The waveform 
itself is shown as two curves. The uppermost, dashed curve shows the nominal bandwidth 
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of the waveform. The lower, dotted curve shows the long-term throughput achieved by 
SFTP over a modulated network of that bandwidth. A perfectly agile estimator would 
produce observations entirely within these two curves. 

Figure 7.4(a) shows that Odyssey demonstrates excellent agility on the Step-Up wave- 
form by detecting the increase in bandwidth almost instantaneously. There is no overshoot, 
and the settling time — the time required to reach and stay within the nominal bandwidth 
range — is at worst 0.5 seconds. The second graph, Figure 7.4(b), shows that agility on 
the Step-Down waveform is not quite as good as on Step-Up. The settling time for this 
waveform is as much as 2.0 seconds. However, there is no overshoot for Step-Down. The 
slower downward transition is caused by the fact that a throughput estimate is generated 
only at the end of a window of SFTP data, as shown in Figure 4.10. If bandwidth falls 
abruptly while a large window of data is being transmitted, the drop is not recorded until 
the last packet of the window arrives. Further, this window will be elongated in time; that 
is, the end of the window will arrive even later than it would have had the bandwidth not 
dropped, further delaying the observation. 

Figures 7.5(a) and 7.5(b) show agility for the Impulse-Up and Impulse-Down wave- 
forms. Neither waveform exhibits overshoot. For Impulse-Up, settling time in the worst 
case is 1.0 seconds. In both cases, the viceroy tracks the impulse. 

Varying Demand To measure agility with respect to bandwidth demand, the supply of 
bandwidth was held constant, but the demand for bandwidth was varied. At the beginning 
of the experiment, a single bitstream application is running; halfway through, a second, 
identical one is started. The viceroy's estimation of the total bandwidth available to the 
machine, as well as that available to the second, added stream, was measured. Ideally, the 
viceroy will yield a constant estimate of the total bandwidth, since the supply of bandwidth 
to the machine does not vary. It should also estimate that half of that bandwidth is available 
to the second bitstream client immediately after it is started. 

To study sensitivity of the results to offered load, the experiment was run three different 
times, varying the demand placed by each individual instance of bitstream: 10% of the 
nominal bandwidth, 45%, or 100%. In the first two cases each instance is rate-controlled; 
in the other they are not. Thus, when the pair of bitstream applications were both running, 
the total bandwidth they attempt to consume is 20%, 90%, and 200% of that nominally 
available. In the first case, it is trivial to satisfy both bitstream demands. In the second, 
the two bitstream clients together attempt to consume at a slightly higher rate than can 
empirically be achieved given the 120KB nominal bandwidth; a single SFTP stream can, 
in the long term, only achieve 94KB/second, but 95% of the nominal bandwidth is 114KB. 
Clearly, in the third case the two streams will directly compete for more bandwidth than is 
available. 

The results of these experiments are shown in Figure 7.6. The total bandwidth estimated 
for the machine is depicted in the upper curve; the bandwidth estimated to be available to 
the second, additional stream is shown in the lower curve. Recall that the viceroy will 
estimate bandwidth available to the two streams based on the 80/20 rule: 80% of the total 
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This figure shows the agility of bandwidth estimation in the face of the Step-Up and Step- 
Down reference waveforms. Each graph merges the results from five trials, and each 
bandwidth observation is represented by a single dot on the graph. The dashed lines 
represent the nominal bandwidth of the emulated network, as specified by the synthetic 
traces used for emulation. The dotted lines are the measured, instantaneous throughputs 
obtained using a large bulk transfer between client and server. Ideally, all samples would 
lie between the dashed and dotted lines. 

Figure 7.4: Supply Estimation Agility: Step-Up and Step-Down 
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This figure shows the agility of bandwidth estimation in the face of the Impulse-Up and 
Impulse-Down reference waveforms. Each graph merges the results from five trials, and 
each bandwidth observation is represented by a single dot on the graph. The dashed lines 
represent the nominal bandwidth of the emulated network, as specified by the synthetic 
traces used for emulation. The dotted lines are the measured, instantaneous throughputs 
obtained using a large bulk transfer between client and server. Ideally, all samples would 
lie between the dashed and dotted lines. 
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Figure 7.5: Supply Estimation Agility: Impulse-Up and Impulse-Down 
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This figure shows the agility of bandwidth estimation in the face of varying demand. The 
upper curve is the total estimated bandwidth; the lower is the bandwidth available to the 
second stream, which starts after 30 seconds of measurement. The pairs of straight lines 
show the nominal ranges for each curve; a perfectly agile system would always show the 
upper and lower curves within their respective pairs. Each graph depicts the results of five 
trials. The solid lines show averages, and gray regions show the spread between observed 
minimum and maximum values. 

Figure 7.6: Demand Estimation Agility 
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bandwidth is allocated based on recent use, and the remainder is divided fairly. 
Rather than show individual observations, each curve shows the average as the solid line 

in the middle of the curve, along with the range of observed values as the grey enclosing 
the curve. As before, the experiment was primed for thirty seconds with a single bitstream 
application in order to eliminate start-up artifacts. 

In the low-utilization case, the viceroy correctly estimates both the total bandwidth as 
well as that available to the second stream. For the other two cases, settling time for the 
second stream can be long. In the mid-utilization case, the second stream first reaches nom- 
inal value within 5.8 seconds, on average. In the high-utilization case, it does so within 7.6 
seconds on average. These settling times are due to the proportional division of bandwidth; 
since the ongoing stream has a history of using the link, and the new one does not, the 
former is given a larger proportional share until the latter catches up. 

Additionally, the two high-utilization cases exhibit two troubling effects. The first is a 
transient in the estimation of total bandwidth upon commencement of the second stream. 
The second is oscillation in the estimate of the proportion available to the second stream. 

The transient, while visible in both the 45% and 100% case, is most severe in the latter; 
in that case, the bandwidth available to the machine as a whole is estimated to be about 
38K — less than 40% of the minimum expected value. It takes as long as 4.5 seconds for 
the viceroy to recover from this transient. This transient is likely caused by the connection 
establishment routine used by RPC2 interrupting an in-progress data transfer; since the first 
stream is constantly consuming data, any new connection is almost certain to interrupt a 
window's transfer. 

The oscillation in estimated values is due to the combination of bitstream prefetching 
and the viceroy's mechanism to estimate the portion of total bandwidth to each connection. 
The prefetch algorithm works with fairly large chunks — 64KB at a time. At the network 
speed provided by modulation in these experiments, this takes slightly more than half a 
second. The viceroy, in estimating the proportion of total bandwidth available to each 
connection, biases that estimate in favor of recent use. 

These two combine to produce the oscillating effect seen in Figures 7.6(b) and 7.6(c). 
The latter experiment, where each connection effectively takes turns using the machine's 
link, shows very regular oscillation between the first and second streams. However, the 
former, where each synthetic application occasionally pauses, shows a much less regular 
pattern. 

7.2.3   Notifications 

The next component to examine is the cost of notifying an application that the availability 
of some resource has changed in a significant way. Not surprisingly, this cost is larger than 
that to place a resource request, but comparable a null RPC call between two processes on 
the client. Since requests make use of several global data structures, process notification 
costs depend on the total number of processes with requests outstanding, whether or not 
they are to be notified. 
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To measure this cost the experiment sets up two test resources in the viceroy: 
t o -no t i f y and no t -no t i f i ed. At the beginning of each experiment, two sets of syn- 
thetic clients start up; each client in the first set places a resource request on the t o - no t i f y 
resource, while each of the others places a request on the not -no t i f i ed resource. Once 
this has happened, the viceroy changes its estimate of the to-notify resource, and no- 
tifies each application in the first set; the total time required to perform this notification is 
recorded. One would expect that the number of processes in the to-notify set would 
be the largest contributing factor to this time, while the not -not i f ied set would have a 
smaller impact. 

Notified Not Notified Time (ms) 

0 1.17        (0.06) 
1 10 1.23         (0.03) 

20 1.35        (0.10) 
0 1.87        (0.04) 

2 10 2.08        (0.01) 
20 2.20        (0.17) 
0 4.09        (0.19) 

5 10 4.27        (0.05) 
20 4.45        (0.09) 
0 8.11         (0.41) 

10 10 8.27        (0.20) 
20 8.37        (0.18) 

This table shows the costs of notifying processes of changes in resource availability. Each 
major row gives the number of processes to be notified; each minor row gives the number 
of extra processes with requests outstanding on another resource for which no notifica- 
tions are generated. The time values represent an average over five trials, with standard 
deviations given in parentheses. 

Figure 7.7: Cost of Notification 

The results for a set of these experiments appear in Figure 7.7. The cost to notify one 
process is comparable to the cost of intra-machine RPC on the client. However, as the 
number of processes that are notified increases, the time to notify all processes increases 
sub-linearly; this is because resource notifications are posted with asynchronous upcalls; 
the viceroy posts all notifications before yielding control. While the cost of notification 
does go up slightly with the presence of additional processes that are not notified, it does 
so only modestly, between 10 and 20 ßs per process. However, these additional costs are 
worth further investigation. 
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7.2.4   Type-Specific Operations 

The last system-limited component in the decision loop of Figure 7.3 is the cost to request 
a type-specific operation, and obtain its result. These operations, implemented by wardens, 
are typically used for changing fidelity or for performing type-specific access methods. 
Type-specific operations pass arguments in an unstructured buffer to the warden responsible 
for that type, and receive results in a separate unstructured buffer. 

The costs of performing a type-specific operation can be broken down into three com- 
ponents: the time to pass the arguments to the warden, the time for the warden to perform 
the operation, and the time to return the results back to the caller. The second of these 
is properly the responsibility of the warden, not the system. The other two, however, are 
imposed by the system, and vary based on the size of the buffers to be passed. 

To measure these costs, the root warden was extended with two trivial type-specific 
operations; write for passing buffers of varying sizes to the warden, and another, read 
for returning buffers of varying sizes back to the calling application; the latter passes in a 
very small buffer to the warden with the expected size of the result. A synthetic application 
then uses these type-specific operations, timing ten thousand iterations. This application 
was run five times for each size and direction of transfer. 

Bytes Write (//s) Read O'S) 
4 578  (2.9) 599 (3.2) 

256 585  (i.4) 608 (4.2) 

512 606  (7.9) 624 (1.9) 

1024 622  (3.2) 641 (5.3) 

2048 696  (15.2) 693 (7.0) 

4096 767  (16.9) 745 (9.5) 

8192 1,949  (28.1) 1,934 (46.3) 

16384 2,693  (24.0) 2,817 (31.9) 

32768 4,616   (53.9) 4,749 (272.4) 

65536 8,827 (193.3) 9,370 (244.4) 

This table shows the system-imposed costs, in microseconds, to perform type-specific 
operations. Note that these costs do not include any warden-imposed processing delays; 
these can be unboundedly long. The first column gives the size of the buffer transferred 
by the type-specific operation. The second column gives the time to transfer a buffer from 
the application to the warden, while the third gives the time to transfer a buffer of the 
appropriate size from a warden to the calling application. Each time is an average of five 
trials, with standard deviations given in parentheses. 

Figure 7.8: Costs of Type-Specific Operations 

The costs to invoke type-specific operations are shown in Figure 7.8. At small sizes — 
4 KB or less — the costs are dominated by the time to pass the request from the application 
through the kernel and up to the viceroy and warden. At 8 KB or higher, transfer times 



7.3. INDIVIDUAL APPLICATIONS 119 

begin to dominate the costs of inter-process communication through the interceptor. 
The jump from 4KB to 8KB is particularly interesting; the time for 8KB is more than 

twice the time for 4KB. Profiling the kernel shows that copying data buffers larger than 
8KB between user and kernel space gives rise to significant fault overhead in the virtual 
memory subsystem. Performing two regressions on the data in Figure 7.8, one for sizes 
up to 4KB, and one for sizes 8KB and greater, gives rise to the following piecewise-linear 
function: 

_ fö79^s + 48ns(6)     if6<=4KB 

^ ~ {791/iS + 121ns(6)    if b >= 8KB (7-1) 

_ f603^s + 36ns(6)     if6<=4KB 
read_ \705^s + 131ns(6)    if6>=8KB (?'2) 

In other words, per-byte costs for sizes greater than 8KB are three times that for sizes 4KB 
or less. 

To ensure that this overhead is not due to a performance problem in tsop itself, an 
experiment was designed to measure the costs in copying data from user space to kernel 
space. A simple system call was added to the kernel which is passed a pointer to a buffer, 
and the size of that buffer. It allocates an equally-sized buffer in the kernel, copies the 
user-space data to kernel-space, then disposes of the buffer and returns. The results of this 
experiment, shown in Figure 7.9, show a severe jump in copy costs at 16KB or larger. In 
fact, the jump occurs at exactly 8,193 bytes; the average costs for such a copy are 1,017 fxs. 
The t s op results show a jump at an argument size of 8KB because the t s op must transfer 
some additional data along with the argument buffer, putting it over the copying limit. A 
regression on the copy costs alone suggest costs of 10 ns per byte for copies of 8KB or less, 
and 90 ns per byte for copies of greater than 8KB. 

7.3   Individual Applications 

The evaluation next turns to the degree to which adaptive strategies can cope with sharp 
changes in bandwidth. Each application's adaptive data access strategy is compared to a set 
of possible static strategies; each was run subject to the reference waveforms in Figure 6.1 
to see which of these best satisfies the application's goals. Unlike the experiments of the 
last section, answering this question involves a complete, end-to-end system of application, 
viceroy, warden, and server. 

In these experiments, each application executed the same workload regardless of strat- 
egy. Five trials of each strategy were taken for each waveform. As in the bandwidth 
experiments of Section 7.2.2, each trial was primed for thirty seconds before beginning 
measurement to eliminate startup transients. The only difference between runs was the 
fidelity policy chosen by the applications; all other factors remained the same. 
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Bytes copy in time - O'S) 
4 10 (0.2) 

256 14 (0.1) 

512 17 (0.5) 

1024 24 (0.1) 

2048 36 (0.1) 

4096 91 (2.4) 

8192 126 (0.4) 

16384 1,403 (11.6) 

32768 2,684 (49.2) 

65536 5,408 (128) 

131072 11,670 (187) 

This table shows the time required for a system call to copy a buffer of size b bytes from 
user-space to kernel-space, in microseconds. The first column gives the size of the buffer 
copied. The second column gives the time to copy that buffer; this is an average of five 
trials, with standard deviation given in parentheses. 

Figure 7.9: Costs of Copying Data from User to Kernel Spaces 

7.3.1   Video Player 

XAnim has three static strategies in addition to its adaptive strategy of playing the highest 
quality frames without loss: always play JPEG(99) frames, always JPEG(50), and always 
black-and-white. The higher bandwidth of the reference waveforms is sufficient to fetch 
JPEG(99) frames without loss. At the low bandwidth, however, at best JPEG(50) frames 
can be fetched without loss. 

As defined in Section 5.2, JPEG(99), JPEG(50), and black and white frames have fideli- 
ties of 1.0, 0.5, and 0.01 respectively. For a single execution, XAnim's achieved fidelity is 
the average of the fidelities of all displayed frames. Each reference waveform is one minute 
long; since the movie tracks are all encoded at ten frames per second, there are 600 frames 
to display during a single execution. 

Figure 7.10 summarizes the performance and fidelity of each strategy over the four 
reference waveforms. Each row in the table gives the results for a separate waveform. The 
first three columns give the results for the three static strategies; the fourth column gives 
results for the adaptive strategy. 

Neither of the first two strategies — always black and white and always JPEG(50) — 
drop an appreciable number of frames. This is not surprising. The lowest bandwidth level 
is sufficient to fetch the JPEG(50) track without loss, so switching between it and the higher 
bandwidth should not cause frames to be dropped. However, the JPEG(99) strategy drops 
more than 35% of all frames on the Step waveforms, and more than 54% of all frames 
on the Impulse-Up waveform; the periods of low bandwidth cannot support the JPEG(99) 
track. 
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B/W JPEG(50) JPEG(99) Adaptive 
Waveform Fidelity = 0.01 Fidelity = 0.5 Fidelity =1.0 

Drops Drops Drops Drops         Fidelity 
Step-Up 0       (0.0) 3       (1.8) 169     (0.8) 7    (2.2)    0.73    (o.oi) 
Step-Down 0       (0.0) 5      (11.2) 169       (2.4) 25    (8.9)    0.76    (o.oi) 
Impulse-Up 0       (0.0) 3       (0.7) 325     (4.3) 23    (7.4)    0.50    (o.oi) 
Impulse-Down 0       (o.o) 0     (o.o) 12       (5.7) 14    (6.5)    0.98    (o.oi) 

This table gives the achieved fidelity and number of frames dropped by XAnim under var- 
ious strategies for each of the four reference waveforms. Each observation in the table is 
the mean of five trials, with standard deviations given in parentheses. Notice that Odyssey 
achieves fidelity as good as or better than the JPEG(50) strategy in all cases, but performs 
as well or better than JPEG(99) within experimental error. 

Figure 7.10: Video Player Performance and Fidelity 

Because the adaptive strategy adjusts with changing bandwidth, it provides a better bal- 
ancing between fidelity and performance on the reference waveforms. For both the Step-Up 
and Step-Down waveforms, the adaptive strategy achieves fidelities very near 0.75; it cor- 
rectly displays half of its frames from the JPEG(99) track, and half from the JPEG(50) 
track. In Step-Up, it is slightly lower. This is because the warden yields lower quality 
frames while waiting for the first block of frames to arrive after the increase in bandwidth. 
Likewise, it is slightly higher in Step-Down due to the delay in detecting the drop in band- 
width. During the Impulse-Up waveform, only JPEG(50) frames are displayed by the adap- 
tive strategy, as expected. Likewise, during Impulse-Down, JPEG(99) frames are displayed 
most of the time. 

In all cases, the adaptive strategy drops less than 5% of frames to be displayed. Most 
dropped frames occur during downward transitions. Immediately before such transitions, 
XAnim is displaying JPEG(99) frames. When the transition happens, a block of such 
frames is in transit. This block will necessarily be late, and the frames contained by it will 
be dropped. 

The adaptive strategy comes closest to achieving XAnim's goal of playing the highest 
quality frames without dropping them. While the JPEG(50) and black and white strategies 
drop slightly fewer frames, the adaptive strategy achieves a much better fidelity on all 
waveforms other than Impulse-Up, where they are equal. Conversely, the adaptive strategy 
drops far fewer frames than the JPEG(99) strategy for all waveforms other than Impulse- 
Down, where the two strategies are indistinguishable. 

7.3.2   Web Browser 

The Web browser has four static strategies in addition to its adaptive strategy of fetching 
the best image possible in twice the Ethernet fetch time: always fetch images compressed 
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to JPEG quality 5, always fetch JPEG(25) images, always JPEG(50), or always full quality. 
The workload used in these experiments is the repeated fetching of a single 22 KB image 
as fast as possible. 

As defined in Section 5.3, full-quality, JPEG(50), JPEG(25), and JPEG(5) images 
are assigned fidelities of 1.0, 0.5, 0.25, and 0.05, respectively. For a single execution, 
Netscape's achieved fidelity is the average of the fidelities of all displayed images. 

The performance metric is the average time to fetch and display an image during an 
execution. The time to fetch and display the workload image on an unloaded Ethernet is 
0.2 seconds, giving a target fetch time of 0.4 seconds. The high bandwidth level in the 
reference waveforms is sufficient to fetch full-quality images; at the low level, JPEG(50) is 
the best possible, though it is very close to the transition point between JPEG(50) and full 
quality. 

JPEG(5) JPEG(25) JPEG(50) Full Quality Adaptive 
Waveform Fidelity 0.05 Fidelity 0.25 Fidelity 0.5 Fidelity 1.0 

Time (s) Time (s) Time (s) Time (s) Time (s)         Fidelity 
Ethernet — — — 0.20    (0.00) —                  — 
Step-Up 0.25     (O.oi) 0.30     (O.oi) 0.29   (0.01) 0.46    (O.oi) 0.35   (0.05)   0.78   (0.08) 
Step-Down 0.25     (0.01) 0.30     (O.oi) 0.29   (O.oi) 0.46    (0.00) 0.35   (0.03)   0.77   (0.04) 
Impulse-Up 0.27     (0.01) 0.33     (0.01) 0.34   (0.00) 0.71    (0.00) 0.42   (0.06)   0.63   (0.08) 
Impulse-Down 0.24     (O.oi) 0.27     (0.02) 0.29   (0.01) 0.34    (0.01) 0.36   (0.02)   0.99   (O.oi) 

This table gives the fidelity and average time for Netscape to fetch and display our test 
image under various strategies for each of the four reference waveforms. Each observation 
is the mean of five trials; standard deviations are given in parentheses. Notice that Odyssey 
achieves a better fidelity than JPEG(50) in all cases and, unlike the full-quality strategy, 
meets our performance goal within experimental error for all cases. 

Figure 7.11: Web Browser Performance and Fidelity 

Figure 7.11 summarizes the performance and fidelity of each strategy over the four 
reference waveforms. For comparison, the table also includes the time to fetch the image 
over unloaded Ethernet. The first four columns give the results for the four static strategies; 
the fifth column gives the results for the adaptive strategy. 

All of the first three strategies — JPEG(5), JPEG(25), and JPEG(50) — fetch the image 
within the target of 0.4 seconds, in line with the expectation that the lowest bandwidth 
level can support qualities up to JPEG(50). However, the strategy of always fetching the 
best-quality image only meets the performance goal for the Impulse-Down case; in this last 
waveform, the bandwidth is insufficient to support the strategy only during the very short 
impulse. 

For all waveforms, the adaptive strategy achieves a higher fidelity than 0.5 within the 
performance goal. Furthermore, for the Impulse-Down waveform, the adaptive strategy is 
indistinguishable from the strategy of fetching the best image at all times. For both the 
Step-Up and Step-Down waveforms, the adaptive strategy achieves fidelities close to 0.75 
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by fetching JPEG(50) images during low bandwidth and full-quality images during high 
bandwidth. The actual fidelities are higher because the cellophane occasionally switches 
to the best quality when the bandwidth estimate temporarily reaches the transition point. 
This phenomenon is also evident in the Impulse-Down waveform; fully one quarter of all 
displayed images were full quality. 

As with XAnim, the adaptive strategy provides the best match for the cellophane's 
goal. It provides better fidelities than the JPEG(5), JPEG(25), and JPEG(50) strategies, 
while meeting the performance goal in all cases. In contrast, the full-quality strategy meets 
its performance goal only in the Impulse-Down case, where it is indistinguishable from the 
adaptive strategy. 

7.3.3   Speech Recognition 

Waveform 
Step-Up 
Step-Down 
Impulse-Up 
Impulse-Down 

Recognition Time (sec.) 
Always 
Hybrid 

0.80 (0.00) 
0.80 (o.oo) 
0.85 (o.oo) 
0.76 (o.oo) 

Always 
Remote 

0.91 (O.oo) 
0.90 (o.oo) 
1.11 (0.00) 
0.77 (o.oo) 

Odyssey 

0.80 (O.oo) 
0.80 (O.oo) 
0.85 (O.oo) 
0.76 (o.oi) 

This table gives the average time, in seconds, to recognize the benchmark utterance for 
the two static strategies as well as the adaptive strategy for each of the four reference 
waveforms. Each observation is the mean of five trials. Standard deviations are shown 
in parentheses. Note that Odyssey correctly reproduces the always-hybrid case, which is 
optimal at our reference bandwidth levels. 

Figure 7.12: Speech Recognizer Performance 

The speech recognition system has two static strategies in addition to its adaptive strategy: 
always recognize remotely, or always perform hybrid recognition. Recall that the client will 
not resort to local recognition unless the bandwidth falls to zero. Regardless of strategy, 
though, the quality of speech recognition is the same. Thus, there is only a single fidelity; 
the adaptive strategy aims only to minimize the time for recognition. 

For the speech experiments, we recognized a single, short phrase, repeating the recogni- 
tion as quickly as possible. Figure 7.12 gives the recognition times. The first two columns 
give the times for the two static strategies, the third for the adaptive one. 

At both bandwidth levels in the reference traces, hybrid translation is always the correct 
strategy. As the results show, the adaptive strategy correctly duplicates the always-hybrid 
strategy. At higher bandwidths, an adaptive strategy would have benefits similar to those 
shown in Figures 7.10 and 7.11 
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7.4   Concurrent Applications 

The final evaluation task is to examine the degree to which a central point of resource 
control allows for more accurate adaptation decisions when compared to per-application 
resource management. To do so, the unified bandwidth estimation strategy described in 
Section 4.5.2 is compared to two types of per-application estimation under a variety of cir- 
cumstances. In the first of these estimation mechanisms, each application naively assumes 
that it will receive the full nominal bandwidth of the link. In the second, each application 
estimates its bandwidth based only on its own network traffic, rather than that of the entire 
machine. 

These mechanisms are compared in different experiments. In the first, each Odyssey 
application is run concurrently, subject to the fifteen minute reference waveform depicted 
in Figure 6.2. In this experiment, each of the three applications exhibits very different data 
rates; XAnim consumes the most bandwidth, while Janus consumes the least. 

In the second experiment, two copies of XAnim are run simultaneously, each playing 
a copy of the same movie, streamed from different servers. This gauges the effect of run- 
ning two applications with the same data rate under unified and per-application estimation 
strategies. 

In the third and final experiment, two copies of XAnim are run subject to an empirical 
trace of one of the scenarios described in Section 6.5.2. This trace re-creates a much more 
complex environment than that of the synthetic reference traces, but is a useful example of 
the value of unified estimation in a more realistic setting. 

7.4.1   Different Data Rates 

The first concurrent experiment consists of one copy of each of the three Odyssey appli- 
cations, running concurrently. XAnim plays a single movie that is longer than the fifteen 
minute reference waveform. Netscape repeatedly fetches a single, uncached image, and 
Janus repeatedly recognizes the same, short utterance. 

This experiments is repeated for three bandwidth estimation mechanisms: one uses 
Odyssey's centralized bandwidth estimation, and the other two use alternate forms of es- 
timation — blind optimism, and laissez-faire. This section begins by describing these two 
mechanisms, and then turns to the comparison between them and Odyssey's unified esti- 
mator. 

The first alternative, blind optimism, captures what a naive mobile client might do in 
the presence of an overlay network. Whenever this client changes from one network tech- 
nology to another, it notifies all of its applications of the nominal speed of the new network. 
Each then proceeds under the assumption that it will receive all of the nominal bandwidth. 
Such notification is immediate; there is no delay necessitated by observation. However, it 
is overly optimistic, as it cannot account for contention between applications. 

Blind optimism is implemented in the viceroy using the network modulation upcalls 
described in Section 7.1; the transition points in the waveform are marked to generate 
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timestamp upcalls. When the viceroy receives a modulation upcall, it uses the bandwidth 
value in the upcall to set the bandwidth of each active connection. 

The second alternative, laissez-faire, duplicates the behavior of applications adapting 
in isolation. In this approach, each application estimates the network bandwidth indepen- 
dently from the others. While laissez-faire estimation is more accurate than blind optimism, 
it does suffer from the delays inherent in passive estimation. 

Laissez-faire estimation is implemented with a simple modification to the viceroy's 
unified estimation algorithm. Rather than build a master log of all connections, the viceroy 
examines each log independently; it sets the bandwidth for a connection based only on the 
information known to that connection.1 

In comparing these two alternative mechanisms with Odyssey's global estimator, all 
other factors remain the same. Compared to a real implementation of blind optimism or 
laissez-faire, this does add the costs of placing resource requests, and notifying when they 
are violated. However, as shown in Sections 7.2.1 and 7.2.3, these costs together are ap- 
proximately two milliseconds; quite small considering the time scales of the applications 
in question. 

Video Web Speech 

Drops        Fidelity Seconds      Fidelity Seconds 

Odyssey 1018 (48.6)   0.25 (o.oo) 0.54 (0.02)   0.47 (o.oi) 1.00 (o.oi) 

Laissez-Faire 2249 (80.2)   0.39 (o.oi) 0.95 (0.03)   0.93 (o.oi) 1.21 (o.oi) 

Blind Optimism 5320 (23.3)   0.80 (o.oo) 1.20 (o.oo)    1.00 (o.oo) 1.26 (0.02) 

This table demonstrates the benefit of Odyssey's centralized resource management by 
comparing it to two implementations of uncoordinated estimation. In this experiment, 
XAnim, Netscape, and Janus are all run concurrently. The fidelity and performance met- 
rics for these applications are the same as in Figures 7.10-7.12. The total number of video 
frames to display is 9,000 in all cases. 
Notice that by degrading the fidelity of fetched video and web data, Odyssey comes closer 
to each application's performance goals by factors of 2-5. Such a trade-off is made pos- 
sible by Odyssey's more accurate estimation of bandwidth available to each application. 
Each observation in this table is the mean of five trials, with standard deviations given in 
parentheses. 

Figure 7.13: Concurrent Applications: Different Data Rates 

Figure 7.13 summarizes the results of this comparison. Each row depicts the results for 
a particular estimation mechanism: Odyssey's unified estimation, laissez-faire estimation, 
and blind optimism. The first two columns give the performance and fidelity metrics for 
XAnim and Netscape, respectively. The third column gives the average time for speech 

1This does not correctly model true laissez-faire in the cases where a single application has more than one 
connection. However, for the applications considered here, this is not an issue. 
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recognition. 
Clearly, Odyssey's centralized resource management provides significant benefits over 

both laissez-faire and blind optimism. By correctly accounting for bandwidth competition, 
the Web browser and video player fetch data at lower fidelity, thus enabling all applications 
to come much closer to their performance goals. XAnim under global estimation drops 
a factor of 2 to 5 fewer frames than the other strategies, and Web pages are loaded and 
displayed roughly twice as fast. The resulting decrease in network utilization improves 
speech recognition time as well. 

However, even under centralized resource estimation, the applications do not entirely 
meet their performance goals. There are two main reasons for this. First, Odyssey provides 
only passive estimation, not active control; thus individual applications still tend to interfere 
with one another by inefficient scheduling of the network device. Second, the network is not 
the only over-constrained resource in this experiment; the CPU is also in heavy contention, 
causing late frames and longer display times due to delays in frame and image decoding. 

7.4.2   Similar Data Rates 

The three applications in the experiment of Section 7.4.1 have vastly different data rates. In 
this experiment, which examines the behavior of the estimators for applications with sim- 
ilar data rates, two different XAnim clients play the movie from the previous experiment, 
served from separate servers. They are again subject to the 15-minute tourist waveform, 
and unified estimation is compared to per-application estimation. 

One would expect that in the case of the unified estimator, one of the video players 
is given preferential treatment over the other; it is called the favored player. This is due 
in part to the mechanism dividing bandwidth between multiple, competing connections. 
Connections with a recent history of more network use will be told that they will get a 
larger share of future available bandwidth. Therefore, when averaging the five trials of this 
experiment, the player with the highest achieved fidelity is always considered to be Video 
#1. 

The results for this experiment are shown in Figure 7.14. The video players, when run 
under blind optimism, frequently stalled out in the middle of the trace. This is due to an 
over-taxing of the network, combined with some implementation inefficiencies in the video 
warden; thus, the blind-optimism result could not be reported. 

The results show that, for the unified estimator, there is indeed a favored player — one 
with a higher achieved fidelity. However, the favored player also has a lower number of 
dropped frames. Furthermore, the laissez-faire estimator also shows evidence of a favored 
player, with both higher fidelity and a lower number of dropped frames. This cannot be 
explained simply by higher bandwidth estimations. 

This likely results from an implementation problem in the video warden; for example, 
some global lock that is shared between two video streams to separate servers. This prob- 
lem, in the presence of a heavily subscribed network, causes one of the video players to fall 
behind; it is also responsible for the inability to complete the blind optimism trials. Thus, 
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Odyssey 

Laissez-Faire 

Video#1 

Drops        Fidelity 

801 (620)   0.33 (0.03) 

2787 (763)   0.55 (0.07) 

Video #2 

Drops        Fidelity 

2905   (812)   0.16 (0.06) 

4538 (1090)   0.41 (0.09) 

This table demonstrates the benefit of Odyssey's centralized resource management when 
the concurrent applications have similar bandwidth demands. In this experiment, two 
instances of XAnim are playing the same movie from two different servers, using the 
fidelity and performance metrics shown in Figure 7.10. The first column, Video #1, gives 
the average fidelity and performance of the favored video player over the five trials. For 
each trial, the video player achieving the highest fidelity is considered favored. Under 
blind optimism, the two video players were unable to complete the movie due to over- 
taxing of the network and inefficiencies in the video warden. The total number of video 
frames to be displayed is 9,000 in all cases. 

Figure 7.14: Concurrent Applications: Same Data Rates 

while the bandwidth estimator's logs do show that one of the connections does receive 
higher estimates on average, it is not the only factor. In fact, there is no correlation between 
a connection having a higher bandwidth estimate on average, and that connection's video 
player having a higher fidelity. 

Despite this problem, the results do show that the unified estimator does provide for 
better decisions on the part of applications than the laissez-faire estimator does. The video 
players, subject to the latter estimator, drop between 30% and 50% of the 9,000 frames to 
be displayed. In contrast, under the unified estimator, only 9% to 32% of the frames are 
dropped, even with the warden inefficiencies. As with the experiment in Section 7.4.1, this 
is due to a more realistic choice of fidelities under unified estimation. 

7.4.3   More Realistic Environments 

The two experiments in Sections 7.4.1 and 7.4.2 both use the synthetic tourist waveform. 
While illustrative, those results may not be representative of a real wireless environment. 
Therefore, this experiment uses an empirical trace of one of the wireless scenarios of Sec- 
tion 6.5.2. 

The experiment uses a trace of the Wean scenario. It was chosen for two reasons. First, 
it exhibits the largest regular fluctuations in bandwidth of any of the scenarios. Second, the 
loss rates, particularly during the elevator ride, can also give rise to significant decreases in 
bandwidth. Since the bandwidth of this scenario is larger than that in the reference traces, 
this experiment also uses two instances of XAnim; this combination is the most demanding 
of network bandwidth. 

The results for this experiment are shown in Figure 7.15. As before, each estimator 
exhibits a favored video player that achieves both a higher fidelity and a lower percentage 
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Video #1 Video #2 

Drops       Fidelity Drops        Fidelity 

Odyssey 435 (ii5)   0.70 (0.05) 574 (ii5)   0.59 (0.05) 

Laissez-Faire 630   (75)   0.94 (0.03) 1158 (173)   0.88 (0.04) 

Blind Optimism 911   (255)        1.0       (0) 1011   (307)        1.0       (0) 

This table demonstrates the benefit of Odyssey's centralized resource management in a 
realistic environment; this environment is recreated using an empirically-derived modula- 
tion trace. In this experiment, two instances of XAnim are playing the same movie from 
two different servers, using the fidelity and performance metrics shown in Figure 7.10. 
The first column, Video #1, gives the average fidelity and performance of the favored 
video player over the five trials. For each trial, the video player achieving the highest 
fidelity is considered favored. The total number of video frames to be displayed is 1,750 
in all cases. 

Figure 7.15: Concurrent Applications: Realistic Environment 

of dropped frames. This is again likely due to difficulties in the video warden. 
Perhaps surprisingly, the number of dropped frames is high even under unified estima- 

tion. This is partly due to of the large rate of dropped frames in the middle of the trace; they 
cannot be avoided, and will result in lost frames. Another cause for these drops is the rate 
at which the effective bandwidth changes in this more realistic scenario; it is quite high, 
and the two observational estimators — unified and laissez-faire — have trouble keeping 
up. This results in the same sort of behavior as is seen for the video experiment under 
the Impulse-Up waveform, shown in Figure 7.10. In this waveform, the XAnim client was 
fooled into fetching frames of too high a quality by a transient increase in bandwidth. 

In the face of these difficulties, the unified estimator still provides the best match for 
XAnim's adaptive goal. Under unified estimation, the players drop between 24% and 32% 
of their frames. Under laissez-faire drops range from 36% to 66%, and blind-optimism 
drops between 52% and 57% of all frames. 

7.5   Summary 

This chapter presents the answers to three central questions concerning Odyssey. First, 
what is the most agile an Odyssey application can be given the current system implemen- 
tation? Second, can adaptation to changes in bandwidth provide concrete benefits to appli- 
cations? Third, how important is centralized resource management in providing accurate 
information to concurrent, adaptive applications? 

There are four system-level components that contribute to limits on the agility of any 
Odyssey application. They are: the time to place a resource request, the delay in recogniz- 
ing a change in that resource, the time to notify the requesting process of that change, and 
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the overhead in requesting a type-specific operation and receiving its results. In the current 
prototype, the viceroy detects changes in bandwidth on the order of a few seconds; this 
dominates the other costs, which together amount to a few milliseconds. 

To examine the benefits of adaptive strategies in the face of varying bandwidth, each 
application was extended to support a set of static strategies. These strategies were com- 
pared to the adaptive form of the application, subject to the reference waveforms. For each 
application, when the adaptive strategy can benefit, it does; otherwise, it mimics the correct 
static strategy. 

Finally, Odyssey's centralized bandwidth estimation mechanism was compared to two 
per-application mechanisms. In the first, blind optimism, each application is notified of 
the nominal link bandwidth at the instant it changes. In the second, laissez-faire, each 
application estimates its effective bandwidth in isolation. When compared with one an- 
other in the face of concurrent, competing applications, global estimation comes two to 
five times closer to meeting applications' goals. These results hold without regard to the 
relative bandwidth needs of the concurrent applications, and bear out under both synthetic 
environments as well as more realistic and noisy ones. 

Together, these experiments provide compelling evidence that Odyssey provides both 
the necessary and sufficient mechanisms for supporting diverse, concurrent adaptive ap- 
plications. The system is agile with respect to changes in the availability of resources. 
Individual applications directly benefit from adaptation, and centralized resource control is 
necessary to the making of good adaptive decisions. 

However, two further steps would be required to provide irrefutable evidence. First, a 
second application with a different adaptive policy for one of the existing data types would 
have to be written; this would empirically demonstrate Odyssey's ability to support diverse 
applications. Second, the viceroy would have to be extended to support all of the over- 
constrained resources, not just the network; this should enable applications to come much 
closer to meeting their adaptive goals. 
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Chapter 8 

Related Work 

To the best of the author's knowledge, Odyssey is the first system to simultaneously address 
the problems of adaptation for mobility, application diversity, and application concurrency. 
It is the first effort to propose and implement an architecture for application-aware adap- 
tation that pays careful attention to the needs of mobile computing. The identification of 
agility as a key attribute for mobile systems, and the first approach to evaluating it, have 
both occurred in the context of Odyssey. 

That said, Odyssey has benefited considerably from previous work. The most sub- 
stantial debt is owed to Coda, though other systems have contributed in ways large and 
small. These contributions are described in Section 8.1. More recently, a number of other 
researchers, discussed in Section 8.2, have come to address the problem of adaptation in 
mobile systems. 

An important secondary contribution of this dissertation is the suite of trace modulation 
tools, particularly empirical modulation. This technique is the first to combine three distinct 
ideas into a single tool: 

• trace collection to accurately capture observed network behavior; 
• reduction of observations into a time series of parameters for a simple network model; 
• application-transparent network emulation through model-driven delays and losses 

of packets in a layer below the API of an operating system. 

However, each of these has been invented in isolation by other researchers, as discussed 
in Section 8.3. Finally, Section 8.4 concludes with two systems that include techniques of 
possible use in Odyssey. 

8.1    Design and Implementation Heritage 

Many systems have contributed to the design and construction of Odyssey. The largest such 
contribution is from Coda [39, 50,67], which first demonstrated that client resources could 
be used to insulate users and applications from the vagaries of mobile information access. 
As detailed in Chapters 3 and 4, many aspects of Odyssey — including its implementation 
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in user space, the use of an in-kernel interceptor, and single, global name space — were 
based on positive experience with similar strategies in Coda. The threading and remote 
procedure call packages were taken from Coda without modification. 

The notion of trading file consistency for availability and performance was put forth 
by systems such as Coda and Ficus [59]. The Bayou project applied similar techniques to 
databases [77]. It was the recognition that consistency represented only a single dimension 
of the broader concept of fidelity that led to the design of Odyssey. 

Several systems served as the background to the taxonomy of adaptive systems. Mobi- 
saic [81], W4 [9], and Dynamic Documents [36] all cope with mobility within the context 
of a single application — a web browser. Many similar stand-alone applications exist in 
the commercial marketplace, due to the inability to modify the operating system. These ap- 
plications, such as the Eudora mail client [60], have met with substantial success. Finally, 
toolkits such as Rover [34] and Fox's dynamic distillation infrastructure [24] also take an 
application-only approach to mobility. The key feature missing from all these systems, with 
the possible exception of Rover, is the centralized management of resources. Rover does 
have a single point through which all network traffic passes; however, it is used primarily 
for scheduling different classes of traffic, and the author is aware of no published work 
addressing Rover's use for concurrent applications. 

Additionally, the genesis of many of the individual ideas in Odyssey can be traced to 
earlier work. Upcalls were first proposed by Clark in the Swift operating system [15]. The 
idea of having type-specific behaviors for the standard file interface is a more general form 
of the extensible name resolution provided by the Semantic File System [25]. While Web 
proxies were originally intended to deal with firewalls and provide caching [43], they were 
used in Rover and Dynamic Documents to add functionality to the browser. 

Finally, the installation of pieces of code at low levels of the system to encapsulate 
specialized knowledge about different data types is a common practice in databases [26]. 
The primary purpose of such code is to improve disk management. The use of wardens in 
Odyssey resembles this practice, but differs in that wardens support multiple fidelity levels. 

8.2   Comparable Systems 

Since the first publication of Odyssey's philosophy and design [53, 69], several other re- 
searchers have built systems providing some form of mobile data access. Such systems 
fall into three distinct categories: real-time approaches, software feedback systems, and 
systems similar in spirit to Odyssey. 

8.2.1   Real-Time Approaches 

The first set of systems bring real-time techniques to bear on the problem of mobile data 
access. Such techniques have been an important focus of the high-performance network- 
ing community, and have more recently been applied to CPU scheduling [47] and other 
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resources. The basic ideas in real-time systems are admission control and resource reser- 
vation. When a new task enters the system, it specifies both the workload it will present 
and the performance it will demand. If the workload of the task cannot be added without 
violating any previous performance guarantees, or the requested performance cannot be 
met, it is rejected. Otherwise, it reserves the resources necessary to provide the requested 
performance, and is admitted to the system. 

Resource reservation is geared towards systems where the workload is dynamic, but 
the environment is relatively static; it can be impossible to maintain previously established 
guarantees in the presence of a highly variable, mobile environment. Therefore, the real- 
time community has applied reservation techniques to the problem of mobile data access 
with two modifications [42, 58]. First, rather than reserving a particular quantity of a 
resource, they reserve a range; the underlying system transparently adapts within the range. 
Second, if the range is exceeded or the client moves, a renegotiation involving some or all 
of the end-to-end path is initiated. 

In contrast to these systems, Odyssey abandons the reservation model entirely. If a 
reservation range is too wide, the burden of adaptation is placed on the system with the 
range, degenerating to application-transparent adaptation. If the range is very narrow, the 
application will be forced to renegotiate frequently. Such renegotiations are expensive, 
though Campbell has made progress for the special case of cell handoff [13]. 

Another approach that has arisen from the real-time community is to make market- 
based decisions; Abdelzaher [1] provides an example of such a market-based system. In 
these systems, a new application declares the qualities of data it is prepared to accept, and 
associates a utility with each of these qualities. These utilities are to be expressed in some 
currency common to all applications — for example, money that the application will pay 
for the service over time. For current algorithms to be efficient, they must also be long-lived 
and static. Some central authority then attempts to maximize utility for all applications to 
which it provides service. 

The need for static, long-lived utilities renders a market-based approach less desirable 
for mobile clients; the resource situations of these clients will change over time, changing 
the utility of various qualities. For example, when a mobile client discovers that power 
is scarce, it may want to use its network connection less often; this lowers the utilities 
associated with high qualities of service. However, since the decision is made centrally, the 
service provider cannot know of this change and take it into account. 

Framed as an end-to-end consideration, ultimate responsibility for coping with changes 
in resource levels resides with applications on the mobile client. Thus, rather than providing 
reservation or full centralized management of resources, Odyssey's role is only to improve 
efficiency, agility and fairness by insulating applications from insignificant variations in 
resource levels, and by providing a focal point for resource monitoring and allocation. 
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8.2.2 Software Feedback Systems 

Another approach to coping with mobility is the use of software feedback within an appli- 
cation; the two most prominent examples of this are the video player based on McCanne's 
Receiver-driven Layered Multicast [44], and the video player based on Cen's software 
feedback framework [14, 31]. Such systems monitor their own performance and react to 
changes in it. They scale back quality, and hence resource consumption, when application 
performance is poor, and attempt to discover additional resources by optimistically scaling 
up usage from time to time. 

One advantage of software feedback systems is that they do not need to explicitly corre- 
late performance with resource consumption. For example, a feedback-based video player 
does not need to know what bandwidth is required for any given fidelity. However, these 
systems must be constructed carefully. For example, consider a video player playing a 
video stream; this stream is composed of tracks compressed with progressively more com- 
plicated but aggressive lossy algorithms. If the CPU becomes constrained, the video player 
will begin to drop frames. Switching to a lower fidelity — and conserving network band- 
width — would result in a track requiring even more CPU to decode, worsening the situa- 
tion. 

Further, these approaches are all based on per-application, laissez-faire techniques — 
only an individual application's performance is considered. While the focus on perfor- 
mance rather than resources may alleviate the problems inherent in such an approach, it is 
unclear how these systems would fare in the presence of concurrent competition for scarce 
resources. 

The final difference between Odyssey's approach and software feedback is the issue 
of bandwidth discovery. Odyssey uses only passive estimation to discover an increase in 
network bandwidth. In contrast, software feedback systems scale up usage — effectively an 
active probe of the network. This strategy is questionable in a mobile environment, where 
bandwidth is likely to be scarce. 

8.2.3 Similar Approaches 

A number of researchers examining the problem of mobile data access have taken Odys- 
sey's ideas as a starting point. In Prayer [11], Bharghavan uses many of the ideas originat- 
ing in Odyssey: the split between policy and mechanism in application-aware adaptation, 
a central authority to monitor resource availability, and the basing of adaptation decisions 
on ranges of availability. The fundamental abstractions in Prayer are the resource ranges, 
called QoS classes, and adaptation blocks, which resemble critical sections. 

At the beginning of an adaptation block, an application specifies the QoS classes that 
it is prepared to handle, along with a segment of code associated with each class and an 
action to take should the QoS class be violated within the code segment. These actions 
can include: block, which waits until the QoS class is once again satisfied; best effort, 
which ignores the QoS change; abort, which exits the current adaptation block; rollback, 
which starts the block from the beginning with renegotiation; or an application-defined 
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handler. The authors claim that such adaptation blocks simplify the construction of adaptive 
applications compared to Odyssey. At present, the Prayer implementation is a user-level 
prototype; the authors have not yet presented its evaluation. 

In [86], Welling also starts with the collaborative approach inherent in application- 
aware adaptation. The main focus of this work is on the notification subsystem, a more 
general form of Odyssey's upcalls. In it, different events may be delivered with different 
policies, and these are separate from the mechanism of event delivery. For example, a low 
memory event may be delivered to each application in series until enough memory is freed 
for other uses, while a low bandwidth event can be delivered to each application in parallel. 
At present, it has been used to implement a blind-optimism style of bandwidth detection. 
However, since there is a single entity responsible for bandwidth estimation, there is no 
reason why a global estimation strategy could not be used. 

As in Prayer, Welling's system deals with multiple ranges of resources at a time, rather 
than a single range; these are set up at the beginning of an application's lifetime, though 
they can be changed. This takes some flexibility from the hands of the application. For 
example, in a highly turbulent environment, some applications may choose to add more 
hysteresis to their reactions, while others might choose to remain as agile as possible; hav- 
ing relatively static ranges unnecessarily restricts this type of higher-order adaptation. 

8.3   Evaluation Methodology 

The trace modulation tool suite is a novel combination of three well-known ideas: trace 
collection to characterize system behavior, reduction of performance observations into a 
simple, time-varying model, and the application-transparent use of such a model to em- 
ulate network performance. While each of these has been explored in isolation by other 
researchers, the author is not aware of any previous work, published or unpublished, that 
combines these ideas in a similar manner. 

The best-known system for tracing network behavior is the Berkeley Packet Filter [45], 
which is typically used in conjunction with tcpdump [33]. This architecture is efficient, 
more flexible than that of trace modulation, and has rightly found great favor with the net- 
working community. Trace modulation's collection mechanism differs from the Berkeley 
Packet Filter in that it records device characteristics in addition to traffic information. While 
not strictly necessary for trace modulation, such a record of device behavior is invaluable 
for a better understanding of wireless networks [51]. 

The notion of reducing complex network observations to simple parameters through 
controlled workloads is commonly used in modelling physical channels. The technique 
used to determine bottleneck bandwidth — two ECHO packets sent back-to-back—is quite 
similar to the packet-pair approach used by Keshav [38]. As in the empirical modulation 
workload, packet-pair also assumes a symmetric network. The key difference between 
trace modulation and packet-pair is that the three-packet workload used in empirical trace 
collection also allows derivation of additional per-packet and per-byte latency experienced 
by packets, in addition to those delays imposed by the bottleneck bandwidth. 
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The network emulation tool most similar to our modulation kernel is hitbox, which was 
used in evaluating the performance of the Vegas variant of TCP [2]. Hitbox is an in-kernel 
modulation layer meant to emulate long-haul network characteristics. Each hitbox host is 
configured with a single set latency and bandwidth parameters; when connected together 
in a testbed, they implicitly re-create some desired end-to-end properties. Unlike the traces 
used for modulation, the parameters to a hitbox host are relatively static; they could not 
easily be used to model performance that quickly varies. Also, since the individual per- 
packet delays imposed by hitbox tend to be smaller than those in trace modulation, the 
clock interrupts on hitbox hosts are more frequent than in the default case, causing some 
small perturbation in experimental results. 

A considerably more flexible system, the Probe/Fault Injection Tool [17], allows any 
protocol or application layer to be encapsulated by layers above and below. Layers above 
can be used to generate a test workload, while layers below can be used to perturb existing 
traffic according to some model. Unlike trace modulation, these layers are driven only by 
synthetic models, not by empirically derived ones; however, there is no reason why such 
models could not be used. 

The Lancaster emulator [16] uses a central server rather than an emulation layer in each 
host. This has the advantage that shared-media models can be implemented. However, as 
with Probe/Fault Injection, this emulator uses only synthetic models. 

More broadly, the use of user-level libraries for network emulation is widespread. 
Examples include the Lancaster emulator, Delayline [30], and the slow mechanism of 
RPC2 [65]. While useful, such libraries have two shortcomings: they require recompila- 
tion or relinking of applications, and they only influence traffic to or from the instrumented 
applications, not the entire host. 

8.4    Systems with Potential Contributions 

There are two systems that have invented techniques of some use to Odyssey. One takes 
a much more formal approach in applying control systems to the problem of adaptation, 
while the other provides global network estimation rather than doing so on a per-client 
basis. 

The first system is Cen's software feedback toolkit, mentioned above in Section 8.2.3. 
This toolkit applies linear control systems theory directly to the creation of software feed- 
back systems, which themselves are inherently non-linear. The technique involves decom- 
posing the entire range over which a system must adapt into smaller sub-ranges, within 
which a well-behaved, linear control system is valid. If the system crosses the boundary 
between two sub-ranges, the system provides a form of meta-adaptation that switches to a 
different control system that is valid for the new range. Within the linear portions, formal 
analysis can be brought to bear to prove certain properties of the system. 

The second system is SPAND — shared passive network performance discovery — that 
estimates global network performance citeodyssey:seshan97. Each SPAND host records 
observations of the network performance achieved between it and the hosts with which 
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it communicates. These observations are periodically sent to a performance server that 
groups reports based on domain. "When a client queries the performance server for an 
estimate of the network quality to some target host, the performance server produces an 
estimate based on the experiences of other hosts within the client's domain in communicat- 
ing with the target. These estimations are based on passive observation, but the process of 
collecting them adds some small amount of overhead to the system. This approach could 
be used to provide a good first estimate when the Odyssey client has no history upon which 
to rely. 

8.5    Summary 

Odyssey is the first system to provide adaptive services for diverse, concurrent applications. 
The core idea of this system, application-aware adaptation, compares favorably with other 
approaches to adaptation in this domain. This idea has also found favor with other members 
of the mobile systems community, who have used it as a basis for their own work. 

Many previous systems provided inspiration, design, or artifacts used in the construc- 
tion of Odyssey. The most significant of these is Coda, though many other systems con- 
tributed in large and small ways. Additionally, there are two systems, Cen's software feed- 
back system and Seshan's SPAND, which could make obvious contributions to Odyssey. 
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Chapter 9 

Conclusion 

Access to data from mobile clients is becoming increasingly important. This trend is be- 
ing driven by two factors: the increasing power and capability of mobile devices, and 
more readily available wireless networking technologies. The former is bringing low-cost, 
portable hardware with multimedia capability into broad use. The latter provides the means 
with which these small devices can access a broad wealth of shared data. 

This dissertation has shown that these mobile clients must adapt to changes in their envi- 
ronments, and that this adaptation is best provided through application-aware adaptation — 
a collaboration between the system and the applications. Odyssey is the first implemented 
system to demonstrate the feasibility of application-aware adaptation, and the evaluation of 
this prototype confirms the importance of this approach to adaptation. 

This chapter begins in Section 9.1 with a brief description of the contributions made 
in the course of demonstrating the thesis. This work has also uncovered many avenues of 
further inquiry; these are presented in Section 9.2. Finally, Section 9.3 concludes with the 
major lessons to be taken from the dissertation. 

9.1    Contributions 

This dissertation makes contributions in three broad areas. The first consists of the concep- 
tual ideas underpinning the work. The second consists of the artifacts — tools and research 
testbeds — created in the course of the dissertation. The third set of contributions are the 
lessons taken from the qualitative and quantitative evaluation of these artifacts. Each of 
these areas is discussed in the following sections in turn. 

9.1.1    Conceptual Contributions 

Many researchers have recognized the need for adaptation in mobile systems. This work 
is the first to formalize this notion as the trading of fidelity — a type-specific notion of 
data quality — for resource consumption. While this forces the exposure of types within 
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the system, access to such type knowledge can have performance advantages through the 
tailoring of caching policy, choice of transport protocol, and the like. 

The second conceptual contribution of this dissertation is the taxonomy of adaptive 
systems. This taxonomy is based on the relative roles the system and its applications play 
in making adaptive decisions. The recognition that diverse, concurrent applications are 
best served by a collaboration with the system was the keystone of this work. This no- 
tion is based upon the fact that the system is best positioned to monitor the availability of 
resources, but the applications must decide how to react to changes in that availability. 

The third conceptual contribution of this work was its evaluation strategy. Any eval- 
uation of an adaptive system must simultaneously address both quality and performance. 
The best quality can always be provided by sacrificing performance, and vice versa. Since 
wireless networks, by their very nature, are complex and yield irreproducible results, they 
cannot be used to carry out such an evaluation. This work was the first to propose transient 
response analysis as the method by which to evaluate adaptive systems. 

The architectural design of Odyssey, particularly the decomposition between viceroy 
and warden, forms the fourth contribution. This decomposition is primarily a matter of 
following software engineering principles. It allows type information to encapsulated in 
small code components that do not interfere with one another. There is a single interface 
between each of these type-aware components and the rest of the system; this interface is 
the same regardless of underlying type. The notion that type-specific operations need only 
be interpreted by wardens and applications provides for further insulation. 

The final conceptual contribution is the notion of trace modulation. There are two 
key uses for modulation. The first is the repeatable re-creation of behavior found in a live 
wireless network. Because such networks provide neither repeatable performance nor good 
experimental control, such a re-creation is invaluable. The second use of trace modulation 
is in carrying out transient response analysis, which is central to this work. 

9.1.2   Artifacts 

This dissertation has produced three substantial artifacts. The first is the upcall mechanism 
added to NetBSD; a general purpose mechanism that is completely separable from Odyssey. 
Its use in the measurement testbed greatly simplified data collection and analysis. While 
its performance could be improved, it imposes no additional constraints — for example, 
thread models or synchronization — on applications that wish to use it. 

The second artifact is the trace modulation tool suite. It has been used for both the 
evaluation of Odyssey as well as measuring and modelling a wireless installation [51]. The 
tool can be used to provide either a purely synthetic testbed, or one that closely approxi- 
mates a live wireless network. Using the tool is no more difficult than traditional, wired 
network experiments. It can potentially become a widely-used tool in the mobile systems 
community. 

The final, and most important, artifact produced in the course of this work is Odyssey 
itself. Together with the sample applications, it demonstrates the feasibility of application- 
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aware adaptation, and provides a valuable testbed for understanding the deeper implications 
of adaptive systems. It forms the basis of most of the future work outlined in Section 9.2. 

9.1.3   Evaluation Results 

This work has contributed several important lessons from qualitative and quantitative eval- 
uation. In modifying the applications described in Chapter 5, the changes required to make 
use of application-aware adaptation were minor, and confined to small areas of code. Build- 
ing the wardens was more challenging, but this can be done once per data type, and lever- 
aged across all applications using that data type. Interestingly, adding type-specific access 
methods in the wardens often simplified applications. 

The evaluation empirically shows that passive bandwidth estimation, in the absence of 
reservation or admission control, can be very accurate for the time scale at which these 
applications adapt. In the face of a sharp change in the supply of bandwidth, the estimator 
takes at most a few seconds to recognize and correctly track that change. In the face of 
a sharp change in demand for bandwidth, the estimator can take several seconds to detect 
it. It also demonstrates some oscillation between competing streams; this is a result of the 
estimator's bias towards recent use. 

The delay in detecting changes in available bandwidth is the most significant limita- 
tion on agility imposed by Odyssey. This work has shown that the remaining delays are, 
together, on the order of a few milliseconds. Thus, application-aware adaptation can be 
implemented with excellent agility. 

The work has also shown that, in the face of changing network bandwidth, adaptive 
data access strategies are superior to static ones; they provide the best balance between 
performance and data quality. In those situations where there is no benefit to be gained by 
adaptation, an adaptive strategy correctly mimics the correct static strategy. 

Finally, the dissertation empirically demonstrates the critical importance of centralized 
resource management in supporting concurrent, competing applications. If applications are 
left to their own devices in estimating available bandwidth, they will not correctly detect 
the interference generated by other running applications. Such unwarranted optimism leads 
to poor fidelity choices, and hence poor performance. 

9.2   Future Work 

This dissertation has opened many avenues of future work. Improvements can be made to 
each area of Odyssey: the system, the applications, and the evaluation testbed. Some of 
these are modest in scope, while others are more ambitious. This section explores each 
of these areas in turn, and concludes with a discussion of the broader research directions 
suggested by this dissertation. 
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9.2.1 System Extensions 

The first and most pressing system-level need is to add the full complement of resources 
described in Section 3.3.2. The estimator for network latency is already present; round trip 
time is calculated in the process of estimating bandwidth. Of the remainder, disk space will 
be the most straightforward to implement, since Odyssey's cache space is directly under the 
viceroy's control. The others more challenging. The estimation of available CPU cycles 
must be in platform-independent units, such as SPECint95 ratings, or they will be unusable. 
Correctly estimating battery power depends on hardware support, such as that provided by 
Intel's smart battery [32]. Monetary costs are likely to be the most difficult to calculate and 
use, given the number and complexity of possible rate structures. 

One feature of the current design that could be eliminated is the tight coupling between 
names and types. While the tome structure itself is critical to preserving administrative 
scalability, this coupling needlessly complicates the handling of composite or container 
objects — for example, a multimedia object that contains synchronized video and audio 
streams. Combining tomes with some other naming structure, such as X.500 [12], and 
explicitly supporting an aggregation type would be useful. 

The third area of the system to improve is the algorithm that divides total bandwidth 
amongst multiple connections. The current practice of weighting based on recent use re- 
sults in some undesirable effects. It might be useful to make use of the windows of tolerance 
in bandwidth requests to reduce these effects. However, actual use must remain a key fac- 
tor in the decision, since an application may request a particular window of tolerance that 
cannot be met even in the absence of competing connections. 

9.2.2 Application Improvements 

There are improvements that could be made to each application in Chapter 5. Web objects 
should have some notion of degradation for elements other than images; they also form 
a natural basis for exploring the notion of aggregate objects. Adding fidelity to speech 
recognition — in the form of reduced acoustic models, vocabularies, and grammars — 
is an important challenge. Finally, both XAnim and the speech recognition system are 
sensitive to computational power as well as network bandwidth. Extending them to use this 
resource in making adaptation decisions would be of great benefit. 

There are also new applications that would benefit from an adaptive approach. The most 
important of these from the standpoint of mobile systems is a mapping application. Maps 
are typically represented as collections of vectors and points that are rendered into images. 
The sizes of these data structures are large for even moderately complicated maps, and 
rendering them is computationally expensive. The dimensions of fidelity for map objects 
include minimum feature size, feature set, and granularity of individual features. Changing 
any of these can reduce both the representation size and rendering costs. 
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9.2.3 Trace Modulation Improvements 

The trace modulation testbed is an extremely promising tool, but could be made even 
stronger. The first, and most important, improvement would be to extend it to cope with 
asymmetric networks. In trace replay, changing from one set of parameters to two for each 
time slice would enable the re-creation of asymmetric performance. However, empirically 
capturing such performance would require fine-grained, synchronized clocks. 

More practically, the tool itself can be improved and simplified. Rather than having an 
ad hoc trace collection mechanism, it should be relatively easy to make use of the Berke- 
ley Packet Filter [45] to make collection more flexible. It should also be possible to re- 
implement the trace replay mechanism as a piece of code that can be dynamically loaded 
into the kernel, further simplifying its use. 

Trace modulation is primarily meant to emulate a wireless network from the perspec- 
tive of a single host. While this host may experience some form of interference encoded 
in the replay trace, it is not possible to have the actual workloads from two replay hosts 
interfere in a meaningful way. Extending trace modulation techniques to multiple hosts 
using a shared medium is of obvious value. This problem has been addressed by the Lan- 
caster emulator [16], which is a library implementation that must be linked with specific 
applications, providing delays based on purely synthetic models. However, no host-wide 
solution that uses empirically-driven models yet exists. 

9.2.4 New Directions 

Finally, this dissertation has opened the door to four broader research topics, for which 
Odyssey can serve as a starting point. First, how can users be informed of and involved 
in adaptation decisions? Second, how can one modify a binary-only application to take 
advantage of adaptation? Third, how can the ad hoc decomposition of functionality in 
the speech recognition application be generalized? Fourth, how can the construction of 
adaptive systems be brought from an ad hoc activity to a principled, engineering discipline? 

Studies have shown that variability in response time is an annoyance to users that can 
make tasks more difficult [71]. It is not difficult to imagine that large, frequent variations in 
quality would also be troubling. Thus, while very agile applications obtain the best possible 
quality within performance bounds, such instability is not clearly preferable. Furthermore, 
consider the case of two applications competing for scarce bandwidth. It may be possible 
to satisfy a higher fidelity for either if it is favored, but not if the two are treated equally. 
Making such a decision must involve user input. 

Netscape presented a compelling challenge to application-aware adaptation because its 
source was not available. However, in Netscape's case, the task was greatly simplified by 
the presence of a proxy interface. The general problem is much harder, though could be 
solved through binary rewriting, system call interception, or similar techniques. 

The speech recognition application suggests the importance of being able to dynami- 
cally decide whether to ship data or computation. This capability is currently provided in 
an ad hoc manner by the speech warden. Extending Odyssey to provide full support for 
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dynamically deciding between function and data shipping would enable us to more thor- 
oughly explore this tradeoff in mobile computing. 

One compelling use of the ability to decide between function and data shipping is the 
searching of distributed repositories. Search tasks exhibit little or no temporal locality, 
rendering caching ineffective in compensating for a lack of bandwidth. One could address 
this problem by combining the power of dynamic sets [75] with dynamic function vs. data 
shipping decisions. 

Finally, the current state of the art in building adaptive software systems is a black art. 
Developing systematic principles for their design, as well as techniques for analyzing their 
agility and stability before they are built, would be valuable. Cen's work [14] is a promising 
start along these lines, but much remains to be done. 

9.3   Concluding Remarks 

Ever more capable mobile hardware and wireless networking services combine to make 
the problem of mobile data access increasingly important. However, properties intrinsic 
to mobile environments force clients to adapt their behavior by trading data quality for 
resource consumption. 

In addressing the problem of adaptation in the context of Odyssey, a few underlying 
themes stand out. The keystone of this work — the collaboration between the system and 
its applications — is a direct application of the end-to-end argument to the problem of 
adaptation. Functionality is placed at the outermost layer possible; the applications must 
have a say over policy, but cannot accurately measure their environment without system 
support. Knowledge of object types is placed in the system in order to improve caching 
and transport decisions. 

The second major theme is simplicity. Odyssey is designed to be a minimal set of 
extensions to a common operating system. The API presented to applications offers very 
few new abstractions, and presents no undue burdens on applications. Rather than inject 
active probes into the network, the system relies only on passive estimation. The user-level 
implementation greatly simplified construction, at a modest performance cost. 

The final major theme is the importance of careful evaluation. Subjecting Odyssey to 
controlled, simple, repeatable bandwidth scenarios enabled tractable, convincing analysis. 
Without such a strategy, very few quantitative conclusions can be reached. 

While Odyssey makes a convincing case for application-aware adaptation, it is only a 
starting point in addressing the general problem of mobile data access. Users must become 
actively involved in adaptation decisions, and the notion of adaptation must be extended to 
computational processes as well as data structures. The very process of building adaptive 
systems is in its infancy. However, Odyssey should serve well as a base from which to 
explore these problems. 
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